Answer:
a) During the reaction time, the car travels 21 m
b) After applying the brake, the car travels 48 m before coming to stop
Explanation:
The equation for the position of a straight movement with variable speed is as follows:
x = x0 + v0 t + 1/2 a t²
where
x: position at time t
v0: initial speed
a: acceleration
t: time
When the speed is constant (as before applying the brake), the equation would be:
x = x0 + v t
a)Before applying the brake, the car travels at constant speed. In 0.80 s the car will travel:
x = 0m + 26 m/s * 0.80 s = <u>21 m </u>
b) After applying the brake, the car has an acceleration of -7.0 m/s². Using the equation for velocity, we can calculate how much time it takes the car to stop (v = 0):
v = v0 + a* t
0 = 26 m/s + (-7.0 m/s²) * t
-26 m/s / - 7.0 m/s² = t
t = 3.7 s
With this time, we can calculate how far the car traveled during the deacceleration.
x = x0 +v0 t + 1/2 a t²
x = 0m + 26 m/s * 3.7 s - 1/2 * 7.0m/s² * (3.7 s)² = <u>48 m</u>
The answer to this question is false
Answer: critical angle, sin^-1 (n2/n1)
Explanation: the angle of incidence at which the retracted ray makes an angle of 90° with the normal is known as the critical angle.
Snell's law defined refraction mathematically as shown below
n1 sin θi = n2 sin θr
n1 = refractive index of the first medium
n2 = refractive index of the second medium
θi = angle of incidence
θr = angle of refraction
When the refrafted ray is perpendicular to the normal, the angle of refraction (θr) is 90° hence making the angle of incidence (θi) the critical angle θc
By substituting these conditions into the Snell's law, we have that
n1 sin θc = n2 sin 90
According to trigonometry, the value of sin 90 is 1, hence we have that
n1 sin θc =n2
sin θc = n2/n1
θc = sin^-1 (n2/n1)
Answer:
(4) The physical and chemical properties of these minerals determine how humans use them.
Explanation:
All the materials and the metals found on earth shows certain characteristics naturally or in their physical state. These physical characteristics can be their look, their structure, their color, strength, melting point, boiling point, density, etc.
And chemical properties of the metals are defined as those characteristics or features of the metals that it exhibits when these metals reacts chemically.
The physical properties as well as the chemical properties distinguishes each metal from each other. These properties determines how people use these metals in their life.
Answer:
5.49×10⁻⁴ lbm
Explanation:
Convert volume to m³.
V = (200 cm³) (1 m / 100 cm)³ = 0.0002 m³
Find mass in kg.
m = ρV
m = (1.24507 kg/m³) (0.0002 m³)
m = 0.000249 kg
Convert mass to lbm.
m = (0.000249 kg) (2.205 lbm/kg)
m = 0.000549 lbm
m = 5.49×10⁻⁴ lbm