Answer:
The answer to your question is when time = 50 s, work = 5000 J
when time = 90 s, work = 9000 J
Explanation:
Data
time = 50 s or 90 s
Power = 100 watts
Power is defined as the rate of work done per unit of time.
Power = Work / time
-Solve for Work
Work = Power x time
-Substitution
Work = 100 x 50
-Result
Work = 5000
2.-When time = 90 s
Work = 100 x 90
-Result
Work = 9000 watts
Answer:
The velocity of the tennis ball is 4.52 m/s.
Explanation:
Given that,
The distance covered by ball, d = 9.5 meters (due south)
Time, t = 2.1 sec
Let v is the velocity of the tennis ball. We know that the velocity of an object is given by the total distance covered divided by total time taken. It is given by :

So, the velocity of the tennis ball is 4.52 m/s. Hence, this is the required solution.
Answer:
its B hope you have a good Day
Answer:
Explanation:
1. What are the forces acting on the block when it is hanging freely from the spring scale? What is the net force on the block? What are the magnitudes of each of the forces acting on the block? Explain.
When a block is hanging freely, two forces are acting on it = tension force from the spring scale and gravity force on the block itself. The net force is zero as the block is not accelerating. The magnitudes of tension and gravity force are the same but in opposite directions.
2. What are the forces that act on the block when it is placed on the ramp and is held in place by the spring scale? What is the net force acting on the block? Explain. (Assume that the ramps are frictionless surfaces.)
There are three forces acting on the block when it is placed on the ramp and is held in place by the spring scale: as in 1, there are tension and gravity but there is a third force - reaction force from the ramp surface on the block that is perpendicular to the surface. Again the block is not moving so the net force is zero.
3. What is the magnitude of normal force acting on the block when it is resting on the flat surface? How does the normal force change as the angle of the ramp increases? Explain. (Assume that the ramps are frictionless surfaces.)
On flat surface, the normal force is equal to the gravity force of the block i.e. its weight. On a vertical surface, the normal force is equal to zero. For the angle of ramp, θ, the normal force = weight * cos θ.