Answer:
Technician A
Explanation:
Ohms law: I= E/R so rest resistance must be present along with E/potential difference. Even if just wire shorted together there is resistance but very little.
Tech B: Again ohms law. Current flow is directly proportional to the voltage and inversely proportional to R (resistance or impedance).
Answer:
Check the explanation
Explanation:
Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in
1x0.723x=3x0.780x ⇒ = 426.4 °K
The initail volumes of the gases can be determined by the ideal gas equation of state,
= = 0.201
The equilibrium pressure of the gases can also be obtained by the ideal gas equation
= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4
(0.201+1.275)
= 246.67 KPa = 2.47 bar
Answer:
There is 0.466 KW required to operate this air-conditioning system
Explanation:
<u>Step 1:</u> Data given
Heat transfer rate of the house = Ql = 755 kJ/min
House temperature = Th = 24°C = 24 +273 = 297 Kelvin
Outdoor temperature = To = 35 °C = 35 + 273 = 308 Kelvin
<u>Step 2: </u> Calculate the coefficient of performance o reversed carnot air-conditioner working between the specified temperature limits.
COPr,c = 1 / ((To/Th) - 1)
COPr,c = 1 /(( 308/297) - 1)
COPr,c = 1/ 0.037
COPr,c = 27
<u>Step 3:</u> The power input cna be given as followed:
Wnet,in = Ql / COPr,max
Wnet, in = 755 / 27
Wnet,in = 27.963 kJ/min
Win = 27.963 * 1 KW/60kJ/min = 0.466 KW
There is 0.466 KW required to operate this air-conditioning system
Answer:
The highest grade level is college.