1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
joja [24]
3 years ago
13

A harmonic oscillator with spring constant, k, and mass, m, loses 3 quanta of energy, leading to the emission of a photon.

Engineering
1 answer:
Monica [59]3 years ago
6 0

Answer: (a). E = 3.1656×10³⁴ √k/m  

(b). f = 9.246 × 10¹² Hz

(c). Infrared region.

Explanation:

From Quantum Theory,

The energy of a proton is proportional to the frequency, from the equation;

E = hf

where E = energy in joules

h = planck's constant i.e. 6.626*10³⁴ Js

f = frequency

(a). from E = hf = 1 quanta

    f = ω/2π

where ω = √k/m

consider 3 quanta of energy is lost;

E = 3hf = 3h/2π × √k/m

E = (3×6.626×10³⁴ / 2π) × √k/m

E = 3.1656×10³⁴ √k/m    

(b). given from the question that K = 15 N/m

and mass M = 4 × 10⁻²⁶ kg

To get the frequency of the emitted photon,

Ephoton =hf = 3h/2π × √k/m (h cancels out)

f = 3h/2π × √k/m

f =  3h/2π × (√15 / 4 × 10⁻²⁶ )

f = 9.246 × 10¹² Hz

(c). The region of electromagnetic spectrum, the photon belongs to is the Infrared Spectrum because the frequency ranges from about 3 GHz to  400 THz in the electromagnetic spectrum.

You might be interested in
Can someone help plz?!?
CaHeK987 [17]

Answer:

Direct current or DC electricity is the continuous movement of electrons from negative to positive through a conducting material such as a metal wire. A DC circuit is necessary to allow the current or steam of electrons to flow. In a circuit, the direction of the current is opposite the flow of electrons

Explanation: hope that helped

5 0
3 years ago
Read 2 more answers
A continuously variable transmission:
Reil [10]

Answer:

A continuously variable transmission (CVT) is an automatic transmission that can change seamlessly through a continuous range of gear ratios. This contrasts with other transmissions that provide a limited number of gear ratios in fixed steps. The flexibility of a CVT with suitable control may allow the engine to operate at a constant RPM while the vehicle moves at varying speeds.that means the ans is A.

8 0
3 years ago
In details and step-by-step, show how you apply the Bubble Sort algorithm on the following list of values. Your answer should sh
astraxan [27]

( 12 17 18 19 25 )

<u>Explanation:</u>

<u>First Pass:</u>

( 19 18 25 17 12 ) –> ( 18 19 25 17 12 ), Here, algorithm compares the first two elements, and swaps since 19 > 18.

( 18 19 25 17 12 ) –> ( 18 19 25 17 12 ), Now, since these elements are already in order (25 > 19), algorithm does not swap them.

( 18 19 25 17 12 ) –> ( 18 19 17 25 12 ), Swap since 25 > 17

( 18 19 17 25 12 ) –> ( 18 19 17 12 25 ), Swap since 25 > 12

<u>Second Pass:</u>

( 18 19 17 12 25 ) –> ( 18 19 17 12 25 )

( 18 19 17 12 25 ) –> ( 18 17 19 12 25 ), Swap since 19 > 17

( 18 17 19 12 25 ) –> ( 18 17 12 19 25 ), Swap since 19 > 12

( 18 17 12 19 25 ) –> ( 18 17 12 19 25 )

<u>Third Pass:</u>

( 18 17 12 19 25 ) –> ( 17 18 12 19 25 ), Swap since 18 > 17

( 17 18 12 19 25 ) –> ( 17 12 18 19 25 ), Swap since 18 > 12

( 17 12 18 19 25 ) –> ( 17 12 18 19 25 )

( 17 12 18 19 25 ) –> ( 17 12 18 19 25 )

<u>Fourth Pass:</u>

( 17 12 18 19 25 ) –> ( 12 17 18 19 25 ), Swap since 17 > 12

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 ), Swap since 18 > 12

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted.

<u>Fifth Pass:</u>

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

6 0
3 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
8090 [49]

Answer:

a) The change in Kinetic energy, KE = -1.95 kJ

b) Power output, W = 10221.72 kW

c) Turbine inlet area, A_1 = 0.0044 m^2

Explanation:

a) Change in Kinetic Energy

For an adiabatic steady state flow of steam:

KE = \frac{V_2^2 - V_1^2}{2} \\.........(1)

Where Inlet velocity,  V₁ = 80 m/s

Outlet velocity, V₂ = 50 m/s

Substitute these values into equation (1)

KE = \frac{50^2 - 80^2}{2} \\

KE = -1950 m²/s²

To convert this to kJ/kg, divide by 1000

KE = -1950/1000

KE = -1.95 kJ/kg

b) The power output, w

The equation below is used to represent a  steady state flow.

q - w = h_2 - h_1 + KE + g(z_2 - z_1)

For an adiabatic process, the rate of heat transfer, q = 0

z₂ = z₁

The equation thus reduces to :

w = h₁ - h₂ - KE...........(2)

Where Power output, W = \dot{m}w..........(3)

Mass flow rate, \dot{m} = 12 kg/s

To get the specific enthalpy at the inlet, h₁

At P₁ = 10 MPa, T₁ = 450°C,

h₁ = 3242.4 kJ/kg,

Specific volume, v₁ = 0.029782 m³/kg

At P₂ = 10 kPa, h_f = 191.81 kJ/kg, h_{fg} = 2392.1 kJ/kg, x₂ = 0.92

specific enthalpy at the outlet, h₂ = h_1 + x_2 h_{fg}

h₂ = 3242.4 + 0.92(2392.1)

h₂ = 2392.54 kJ/kg

Substitute these values into equation (2)

w = 3242.4 - 2392.54 - (-1.95)

w = 851.81 kJ/kg

To get the power output, put the value of w into equation (3)

W = 12 * 851.81

W = 10221.72 kW

c) The turbine inlet area

A_1V_1 = \dot{m}v_1\\\\A_1 * 80 = 12 * 0.029782\\\\80A_1 = 0.357\\\\A_1 = 0.357/80\\\\A_1 = 0.0044 m^2

3 0
3 years ago
A consolidation test was performed on a sample of fine-grained soil sample taken from a depth such that the vertical effective s
Scorpion4ik [409]

Answer:

The settlement that is expected is 1.043 meters.

Explanation:

Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil

The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

\Delta H=\frac{H_oC_c}{1+e_o}log(\frac{\bar{\sigma_o}+\Delta \bar{\sigma }}{\bar{\sigma_o}})

where

'H' is the initial depth of the layer

C_c is the Compression index

e_o is the inital void ratio

\bar{\sigma_o} is the initial effective stress at the depth

\Delta \bar{\sigma_o} is the change in the effective stress at the given depth

Applying the given values we get

\Delta H=\frac{8\times 0.3}{1+0.87}log(\frac{154+28}{154})=1.04

3 0
3 years ago
Other questions:
  • Does a thicker core make an electromagnet stronger?
    13·1 answer
  • Create a program named IntegerFacts whose Main() method declares an array of 10 integers.Call a method named FillArray to intera
    12·1 answer
  • How do you connect several springs to increase the equivalent stiffness? What is one example from industry or other real-life si
    7·1 answer
  • A closed, rigid tank fitted with a paddle wheel contains 2.0 kg of air, initially at 200oC, 1 bar. During an interval of 10 minu
    8·1 answer
  • In science, a force is a push or a pull.<br> is it true or false ?
    5·1 answer
  • Help me is it a b c or d?
    14·1 answer
  • Merchandise without an expiration date like electronics, tools and home goods typically have a longer
    15·1 answer
  • Mang Tisoy bought two bags of onion from the market. One bag weighed 8 kg
    14·1 answer
  • NO SCAMS
    9·2 answers
  • Who has the authority to declare a "global emergency"?​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!