Answer:
My answer is=
Ocean surface:0
Seaweed:(-20)
Clownfish:(-23)
Squid:(-44)
Ocean floor:(-50)
(I'm very sorry if I was wrong T~T)
Given Information:
Mass = m = 500 kg
Acceleration = a = 10 cm/s²
Required Information:
Magnitude of rightward net force = F = ?
Answer:
Magnitude of rightward net force = 50 N
Explanation:
From the Newton's second law of motion
F = ma
Where m is the mass and a is the acceleration
To get force in Newtons first convert 10 cm/s² into m/s²
10/100 = 0.1 m/s²
F = 500*0.1
F = 50 N
Therefore, the magnitude of rightward net force acting on it is 50 Newtons.
A commercial oven because it is more durable plus it’s more professional so they use more heat then we do at home
Look first for the relation between deBroglie wavelength (λ) and kinetic energy (K):
K = ½mv²
v = √(2K/m)
λ = h/(mv)
= h/(m√(2K/m))
= h/√(2Km)
So λ is proportional to 1/√K.
in the potential well the potential energy is zero, so completely the electron's energy is in the shape of kinetic energy:
K = 6U₀
Outer the potential well the potential energy is U₀, so
K = 5U₀
(because kinetic and potential energies add up to 6U₀)
Therefore, the ratio of the de Broglie wavelength of the electron in the region x>L (outside the well) to the wavelength for 0<x<L (inside the well) is:
1/√(5U₀) : 1/√(6U₀)
= √6 : √5