Answer:
There is much more friction on the rough surface than there is on the smooth surface.
Explanation:
Answer:
The minimum distance between two points on the object that are barely resolved is 0.26 mm
The corresponding distance between the image points = 0.0015 m
Explanation:
Given
focal length f = 50 mm and maximum aperture f>2
s = 9.0 m
aperture = 25 mm = 25 *10^-3 m
Sin a = 1.22 *wavelength /D
Substituting the given values, we get –
Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m
Sin a = 2.93 * 10 ^-5 rad
Now
Y/9.0 m = 2.93 * 10 ^-5
Y = 2.64 *10^-4 m = 0.26 mm
Y’/50 *10^-3 = 2.93 * 10 ^-5
Y’ = 0.0015 m
Answer:
10 seconds.
Explanation:
We can use a kinematic equation where we know the final velocity, initial velocity, acceleration, and need to determine the time <em>t: </em>
<em />
<em />
<em />
The initial velocit is 30 m/s, the final velocity is 0 m/s (as we stopped), and the acceleration is -3 m/s².
Substitute and solve for <em>t: </em>
<em />
<em />
<em />
Hence, it will take the car 10 seconds to come to a stop.
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
A frog can be many different colours. It appears green under normal 'white' light because it absorbs all the other colours in the light's spectrum apart from green. It reflects the green light back and that is picked up by your eye.
If the light is red, there is no green in the spectrum of the light, only red. So, the red light will be absorbed and there is no green to be reflected back for you to see. Therefore, the frog will not look green.