Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
Either A or D. If I were answering I'd go with my git answer and say A
Answer:
A package is dropped from a helicopter moving upward at 15 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released? (Disregard air resistance.)
Show step by step please.
Note: The answer is given it's should be 1000 m ??
This what i can up with so see what it is kid
Explanation:
Answer:
(a) 3107.98 J
(b) 14530.6 J
Explanation:
mass, m = 3.56 kg
angular speed, ω = 179 rad/s
Moment of inertia of solid cylinder, I = 1/2 mr^2
where, m is the mass and r be the radius of the cylinder.
(a) radius, r = 0.330 m
I = 0.5 x 3.56 x 0.330 x 0.330 = 0.194 kgm^2
The formula for the rotational kinetic energy is given by

K = 0.5 x 0.194 x 179 x 179 = 3107.98 J
(b) radius, r = 0.714 m
I = 0.5 x 3.56 x 0.714 x 0.714 = 0.907 kgm^2
The formula for the rotational kinetic energy is given by

K = 0.5 x 0.907 x 179 x 179 = 14530.6 J
Answer:
Q=mc(T2-T1)
Explanation:
Ti is the temperature
m is mass
c is specific heat capacity for steam
Q is heat, [Q]=J