Answer:
This happens in two ways. If an object is at rest and an unbalanced force pushes or pulls the object, it will move. Unbalanced forces can also change the speed or direction of an object that is already in motion.
Explanation:
Answer:
See the answers below.
Explanation:
We can solve both problems using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F =m*a
where:
F = force [N] (units of newtons)
m = mass = 1000 [kg]
a = acceleration = 3 [m/s²]
![F = 1000*3\\F=3000[N]](https://tex.z-dn.net/?f=F%20%3D%201000%2A3%5C%5CF%3D3000%5BN%5D)
And the weight of any body can be calculated by means of the mass product by gravitational acceleration.
![W=m*g\\W=1000*9.81\\W=9810 [N]](https://tex.z-dn.net/?f=W%3Dm%2Ag%5C%5CW%3D1000%2A9.81%5C%5CW%3D9810%20%5BN%5D)
Answer:
(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%
Explanation:
Using the formula that relate heat and work from the thermodynamic theory as:
solving to Q_out we get:
this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us:
where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get:
Answer:
20.85 years
Explanation:
2.61 km = 2610 m
2.07 kW = 2070 W
First we need to calculate the potential energy required to take m =
kg of rain cloud to an altitude of 2610 m is

With a P = 2070 W power pump, this can be done within a time frame of

or 658037739/(60*60) = 182788 hours or 182788 / 24 = 7616 days or 7616 / 365.25 = 20.85 years