Answer:
x = 2 meters.
Explanation:
Let the position (distance) of fulcrum to the load be x.
Given the following data;
Load = 40 kg
Effort (force) = 40 Newton
Effort arm = 4 - x
To find the position of the fulcrum, we would use the expression;
Effort * effort arm = load * load arm
40 * (4 - x) = 40 * x
160 - 40x = 40x
160 = 40x + 40x
160 = 80x
x = 160/80
x = 2 meters
Therefore, the position (distance) of fulcrum to the load is 2 meters.
Answer:
Explanation:
A uniform circular motion is an example of accelerated motion.
When an object is moving in a uniform circular motion, there is a centripetal force acting towards the centre of the circular path and then a centrifugal force is also acting away from the centre of the circular path. The magnitude of the centripetal force and the centrifugal force is same but the direction is opposite to each other. So, it is explained by the Newton's third law.
Answer: 0.512 kgm²
Explanation:
Given
Force, F = 2*10^3 N
Angular acceleration, α = 121 rad/s²
Lever arm, r(⊥) = 3.1 cm = 3.1*10^-2 m
τ = r(⊥) * F
Also,
τ = Iα
Using the first equation, we have
τ = r(⊥) * F
τ = 0.031 * 2*10^3
τ = 62 Nm
Now we calculate for the inertia using the second equation
τ = Iα, making I subject of formula, we have
I = τ / α, on substituting, we have
I = 62 / 121
I = 0.512 kgm²
Thus, the moment of inertia of the boxers forearm is 0.512 kgm²
Answer: opening of the nicotinic acetylcholine receptor channels.
Explanation:
Neuromuscular junction is a special junction formed between a motor neurone and a muscle fibre. The junction is fortified with nerves and receptors that helps in the transmission of signals from the motor neurone to the muscle fibre in order to bring about the desired voluntary movements through muscular contraction.
Nicotinic acetylcholine receptor are activated through the binding of acetylcholine at the neuromuscular junction. This action leads to influx of sodium ions to accomplish endplate potential.