Answer:
d_{b} = 2 d_{a}
Explanation:
The electrical resistance for a cylindrical wire is described by the expression
R = ρ L / A
The area of a circle is
A = π r²
r = d / 2
A = π d²/4
We substitute
R = ρ L 4 /π d²
Let's apply this expression to our case, they indicate that the resistance of wire A is 4 times the resistance of wire B
= 4 R_{b}
We substitute
ρ 4/π
² = 4 (ρ 4/π d_{b}²)
1 / d_{a}² = 4 / d_{b}²
d_{a} = d_{b} / 2
Potential energy is stored energy. For example, if a bowling ball is on top of a giant hill, we say it has potential energy because it has the potential to do work which is to roll down the hill.
Kinetic energy is the energy of movement so once that ball rolls down that hill, that potential energy is converted to kinetic energy.
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where

Answer:
the answer is B
Explanation:
speed is the rate at which the distance covered changes or the distance divided by the time taken.
scalar is always positive.
The answer should be B. A half step