Question: A loader sack of total mass
is l000 grams falls down from
the floor of a lorry 200 cm high
Calculate the workdone by the
gravity of the load.
Answer:
19.6 Joules
Explanation:
Applying
W = mgh........................ Equation 1
Where W = Workdone by gravity on the load, m = mass of the loader sack, h = height, g = acceleration due to gravity
From the question,
Given: m = 1000 grams = (1000/1000) kilogram = 1 kg, h = 200 cm = 2 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
W = (1×2×9.8)
W = 19.6 Joules
Hence the work done by gravity on the load is 19.6 Joules
Whenever an object is falling, its potential energy
is decreasing and its kinetic energy is increasing.
Olivia's potential energy is decreasing and her kinetic energy
is increasing as she moves toward the right side of the picture,
all the way from W, through X, to the bottom of the arc.
Answer:
Explanation:
Given that:
mass of stone (M) = 0.100 kg
mass of bullet (m) = 2.50 g = 2.5 ×10 ⁻³ kg
initial velocity of stone (
) = 0 m/s
Initial velocity of bullet (
) = (500 m/s)i
Speed of the bullet after collision (
) = (300 m/s) j
Suppose we represent
to be the velocity of the stone after the truck, then:
From linear momentum, the law of conservation can be applied which is expressed as:





∴
The magnitude now is:


Using the tangent of an angle to determine the direction of the velocity after the struck;
Let θ represent the direction:


Answer:
Solenoid's inductance is 1.11 × 10^-8H
The average emf around the solenoid is 1.3 × 10^-5V
Explanation: Please see the attachments below