Answer:
8.70 s
Explanation:
Given (in the y direction):
v₀ = 2.38 m/s
v = 0 m/s
a = 0.310 sin (-62.0°) m/s²
Find: t
v = at + v₀
0 m/s = (0.310 sin (-62.0°) m/s²) t + (2.38 m/s)
t = 8.70 s
Answer:
Explanation:
initial velocity u = 0
final velocity v = 11.3 m /s
distance covered s = 12.8 m
v² = u² + 2 a s
11.3² = 0 + 2 x a x 12.8
a = 4.99 m /s²
again ,
v = u + a t
11.3 = 0 + 4.99 t
t = 2.26 s .
Rest of the sprint will be covered with uniform velocity .
Distance covered = 100 - 12.8 = 87.2 m
speed = 11.3 m /s
time taken = 87.2 / 11.3 = 7.7 s
Total time of 100 m sprint = 7.7 + 2.26 = 9.96 m .
b )
Let the time taken to reach the top speed be t .
acceleration a = 11.3 / t
distance covered s = 1/2 a t²
= .5 x (11.3 / t) x t²
= 5.65 t
Rest of the distance = 100 - 5.65 t
time taken to cover rest of the distance = (100 - 5.65 t ) / 11.3
Total time = (100 - 5.65 t / 11.3 ) + t = 9.75
100 - 5.65 t + 11.3 t = 11.3 x 9.75
100 + 5.65 t = 110.175
5.65 t = 10.175
t = 1.8
acceleration a = 11.3 / t
= 11.3 / 1.8
= 6.278 m /s²
distance covered in 1.8 s
s = 1/2 a t²
= .5 x 6.278 x 1.8²
= 10.17 m .
Answer:
The correct option is c: 396.9 meters.
Explanation:
First, we need to find the time at which the car landed:

Now, we can find the height of the top-level:

Since the car has only a velocity in the horizontal direction, we have:


Therefore, the correct option is c: 396.9 meters.
I hope it helps you!
Gravity affects weight, it does not affect mass. Masses always remain the same. Newton's Second Law of Motion: Force = mass x acceleration The acceleration of an object is: a) directly proportional to the net force acting on the object. ... c) inversely proportional to the mass of the object.
Answer:
Au
Explanation:
Look at a periodic table it can help you a lot.