Answer:
a)
b) 
Explanation:
a) The displacement of the first object is 22.5 m, so we can use the next equation:



positive acceleration.
b) Using the same equation we can find the second value of the acceleration:


positive acceleration.
I hope it helps you!
How tall is the building?
u need to divide the height by 1.6 to get your answer
The correct answer to the question is : 9375 N.
CALCULATION:
As per the question, the mass of the car m = 1500 Kg.
The diametre of the circular track D = 200 m.
Hence, the radius of the circular path R = 
= 
= 100 m.
The velocity of the truck v = 25 m/s.
When a body moves in a circular path, the body needs a centripetal force which helps the body stick to the orbit. It acts along the radius and towards the centre.
Hence, the force acting on the car is centripetal force.
The magnitude of the centripetal force is calculated as -
Force F = 
= 
= 9375 N. [ANS}
The centripetal force is provided to the car in two ways. It is the friction which provides the necessary centripetal force. Sometimes friction is not sufficient. At that time, the road is banked to some extent which provides the necessary centripetal force.
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.