It all comes to the doppler effect, the red shift means that the galaxy is moving away from us. The redshift is a result from the doppler effect, so as the galaxy moves away the wavelength expands, increasing the wavelength which responds to the red light.
I thinks it’s 2...........
Answer:
Explained
Explanation:
Photosphere: The lowest layer of the sun is called photo sphere . It is about 300 miles thick from the surface. It is the source of solar flares. It is marked by bright bubbling granules of plasma.
chromosphere emits a reddish glow as the super heated hydrogen burns off but the red rim can only be seen during total solar eclipse.
The third layer of the sun atmosphere is Corona. It can also only be seen during during a total solar eclipse. Temperature in corona can reach as high as 3.5 million degree fahrenheit. As the gases cool they become solar winds.
Answer:
<h2> 1.643*10⁻⁴cm</h2>
Explanation:
In a single slit experiment, the distance on a screen from the centre point is expressed as y = where;
is the first two diffraction minima = 1
is light wavelength
d is the distance of diffraction pattern from the screen
a is the width of the slit
Given = 460-nm = 460*10⁻⁹m
d = 5.0mm = 5*10⁻³m
a = 1.4mm = 1.4*10⁻³m
Substituting this values into the formula above to get width of the central maximum y;
y = 1*460*10⁻⁹ * 5*10⁻³/1.4*10⁻³
y = 2300*10⁻¹²/1.4*10⁻³
y = 1642.86*10⁻⁹
y = 1.643*10⁻⁶m
Converting the final value to cm,
since 100cm = 1m
x = 1.643*10⁻⁶m
x = 1.643*10⁻⁶ * 100
x = 1.643*10⁻⁴cm
Hence, the width of the central maximum in the diffraction pattern on a screen 5.0 mm away is 1.643*10⁻⁴cm
<span>In the </span>natural logarithm<span> format or in equivalent notation (see: </span>logarithm) as:
base<span> e</span><span> assumed, is called the </span>Planck entropy<span>, </span>Boltzmann entropy<span>, Boltzmann entropy formula, or </span>Boltzmann-Planck entropy formula<span>, a </span>statistical mechanics<span>, </span><span> </span>S<span> is the </span>entropy<span> of an </span>ideal gas system<span>, </span>k<span> is the </span>Boltzmann constant<span> (ideal </span>gas constant R<span> divided by </span>Avogadro's number N<span>), and </span>W<span>, from the German Wahrscheinlichkeit (var-SHINE-leash-kite), meaning probability, often referred to as </span>multiplicity<span> (in English), is the number of “</span>states<span>” (often modeled as quantum states), or "complexions", the </span>particles<span> or </span>entities<span> of the system can be found in according to the various </span>energies<span> with which they may each be assigned; wherein the particles of the system are assumed to have uncorrelated velocities and thus abide by the </span>Boltzmann chaos assumption<span>.
I hope this helps. </span>