The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
Answer:
The net displacement of the car is 3 km West
Explanation:
Please see the attached drawing to understand the car's trajectory: First in the East direction for 4 km (indicated by the green arrow that starts at the origin (zero), and stops at position 4 on the right (East).
Then from that position, it moves back towards the West going over its initial path, it goes through the origin and continues for 3 more km completing a moving to the West a total of 7 km. This is indicated in the drawing with an orange trace that end in position 3 to the left (West) of zero.
So, its NET displacement considered from the point of departure (origin at zero) to the final point where the trip ended, is 3 km to the west.
To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
Answer:
m = 5 [mg]
Explanation:
We must remember that the definition of linear momemtum is defined as the product of mass by distance.
P = m*v
P = momentum = 40 [mg*m/s]
m = mass [mg]
v = velocity = 8 [m/s]
Now clearing m:
m = P/v
m = 40/8
m = 5 [mg]