Answer:
One of the best ways to gain insights in a Design Thinking process is to carry out some form of prototyping. This method involves producing an early, inexpensive, and scaled down version of the product in order to reveal any problems with the current design. Prototyping offers designers the opportunity to bring their ideas to life, test the practicability of the current design, and to potentially investigate how a sample of users think and feel about a product.
Prototypes are often used in the final, testing phase in a Design Thinking process in order to determine how users behave with the prototype, to reveal new solutions to problems, or to find out whether or not the implemented solutions have been successful. The results generated from these tests are then used to redefine one or more of the problems established in the earlier phases of the project, and to build a more robust understanding of the problems users may face when interacting with the product in the intended environment.
hope it's helpful
thank you
and please follow me
False. there's less gravitational force in space than on earth
The force is reasonable for making fusion possible in the Sun is heat energy.
<h3>What is nuclear fission and fusion?</h3>
When the slow moving neutrons are bombarded with the heavy radioactive nuclei, the product is the more number of neutrons are produced with the large amount of energy. This multiplying process is called nuclear fusion.
The amount of energy produced in such a reaction can be calculated using the equivalence of mass and energy relationship.
E = mc²
The same happens in nuclear fusion where large amount of energy is needed to make more heavy nuclei.
Thus, fusion requires heat energy to continue the reaction.
Learn more about nuclear fusion and fission.
brainly.com/question/22991718
#SPJ1
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>
Answer:
The current in wire resistance 2Ω
a). 8696 A
b). fraction power 15.1% a 115kV
Explanation:
Resistance
Ω/Km*40km
R=2Ω
P=1000 MW
a).

Using law ohm
b).


%