I believe the answer is B. that's where the asetroid belt is.
Answer:0.1759 v
Explanation:
Intensity of wave at receiver end is
I=
I=
I=
Amplitude of electric field at receiver end

Amplitude of induced emf
=
=
=
Answer:
10.2 m
Explanation:
The position of the dark fringes (destructive interference) formed on a distant screen in the interference pattern produced by diffraction from a single slit are given by the formula:

where
y is the position of the m-th minimum
m is the order of the minimum
D is the distance of the screen from the slit
d is the width of the slit
is the wavelength of the light used
In this problem we have:
is the wavelength of the light
is the width of the slit
m = 13 is the order of the minimum
is the distance of the 13th dark fringe from the central maximum
Solving for D, we find the distance of the screen from the slit:

Answer:
Components: 0.0057, -0.0068. Magnitude: 0.0089 m/s
Explanation:
The displacement in the x-direction is:

While the displacement in the y-direction is:

The time taken is t = 304 s.
So the components of the average velocity are:


And the magnitude of the average velocity is

Answer:
1500 divided by 150(15m x 10m/s^2) = 10