Answer:
See explanation
Explanation:
If we look at the electron configuration closely, we will discover that the element must have had a ground state electron configuration of 2,4.
This is because, the innermost shell usually holds two electrons while the outer shells hold eight electrons each. The four electrons must be accommodated in the second shell in the ground state configuration of the compound.
However, when the atom is excited, one electron from this shell may move to the third shell to give the excited state configuration 2-3-1 as shown in the question.
https://quizlet.com/17797282/periodicity-review-flash-cards/
i took a test like this and i went to this site /\ /\ /\ and the flash cards have the answers
Answer:
6M
Explanation:
(Molarity x Volume)concentrated soln = (Molarity x Volume)diluted doln
Molarity dilute soln = [(M x V)conc/V (dilute)] = 1.5L x 12M / 3.0L = 6M final dilute soln
Answer:
3.01 × 10²³ molecules
Explanation:
Step 1: Given data
Moles of water (n): 0.500 mol
Step 2: Calculate the molecules of water present in 0.500 moles of water
In order to perform this calculation, we will use the Avogadro's number: in 1 mole of water there are 6.02 × 10²³ molecules of water.
0.500 mol × (6.02 × 10²³ molecules/1 mol) = 3.01 × 10²³ molecules
<span>Based on your information 1000 times greater than pH 13 is the best I can come up </span>with.