<u>Answer:</u> The heat required for the process is 4.24 kJ
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of benzene = 24.8 g
Molar mass of benzene = 78.11 g/mol
Putting values in above equation, we get:

To calculate the enthalpy change of the reaction, we use the equation:

where,
= amount of heat absorbed = ?
n = number of moles = 0.318 moles
= enthalpy change of the reaction = 30.7 kJ/mol
Putting values in above equation, we get:

Hence, the heat required for the process is 4.24 kJ
The element that is most reactive to gas is Hydrogen
Answer:
<h2>Pressure will increase</h2>
Explanation:
At a constant temperature, the pressure of gas will increase proportional to the decrease in volume of the gas.
P1V1= P2V2
Decrease in volume result in increase in pressure as the equation has to hold true.
I believe this topic is quantitative chemistry but I need the equation to work this out sorry
Answer :
The concentration of
before any titrant added to our starting material is 0.200 M.
The pH based on this
ion concentration is 0.698
Explanation :
First we have to calculate the concentration of
before any titrant is added to our starting material.
As we are given:
Concentration of HBr = 0.200 M
As we know that the HBr is a strong acid that dissociates complete to give hydrogen ion
and bromide ion
.
As, 1 M of HBr dissociates to give 1 M of 
So, 0.200 M of HBr dissociates to give 0.200 M of 
Thus, the concentration of
before any titrant added to our starting material is 0.200 M.
Now we have to calculate the pH based on this
ion concentration.
pH : It is defined as the negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Thus, the pH based on this
ion concentration is 0.698