The mass of an atom comes from the protons and neutrons that is found in the nucleus. The number of protons is the atomic number of an element. To find the number of neutrons, subtract the atomic number from the mass of an atom. For example, sodium’s atomic number is 11. This will tell us that sodium has 11 protons in it. The atomic mass of sodium is 23. So subtract 23 form 11 gives us 12. Therefore, there are 12 neutrons in sodium.
Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and when moving towards observer
With of 76 then taking speed in air as 343 m/s we have
Similarly, with of 65 we have
Now
v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain
Answer:
a)
Weight in Air = 0.3N
Weight in Water = 0.25N
Weight in Liquid = 0.24N.
Upthrust /Buoyant Force = Weight in Air – Weight in Fluid(Water in this case)
= 0.3 – 0.25
= 0.5N.
b) R.D of Body = Density of Body/Density of Standard Fluid(Water).
There's a Derived Formula for RD.
I'm gonna Apply it here.
Ask me for the derivation in the Comment section if you need it.
RD = α/ρ = (Weight in Air) / (Upthrust Force)
Where
α = density of the Body(or reference substance)
ρ = density of standard fluid (water)
= 0.3/0.05 = 6.
c) RD of Liquid = (Density of Liquid) /(Density of standard Fluid(water)
Or we just go by that formula
RD of Liquid = Weight in Air/Upthrust(In Liquid)
We'll be using the Upthrust in that Liquid now.
= 0.3 – 0.24 = 0.06
RD = 0.3/0.06 = 5.
I will say increasing temperature but you dont have that option on your list, so I would take B. Increasing Concentration.
The velocity of the package after it has fallen for 3.0 s is 29.4 m/s
From the question,
A small package is dropped from the Golden Gate Bridge.
This means the initial velocity of the package is 0 m/s.
We are to calculate the velocity of the package after it has fallen for 3.0 s.
From one of the equations of kinematics for objects falling freely,
We have that,
v = u + gt
Where
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
and t is time
To calculate the velocity of the package after it has fallen for 3.0 s
That means, we will determine the value of v, at time t = 3.0 s
The parameters are
u = 0 m/s
g = 9.8 m/s²
t = 3.0 s
Putting these values into the equation
v = u + gt
We get
v = 0 + (9.8×3.0)
v = 0 + 29.4
v = 29.4 m/s
Hence, the velocity of the package after it has fallen for 3.0 s is 29.4 m/s
Learn more here: brainly.com/question/13327816