Data:
p = 1 atm
V = 10 m * 8 m * 5 m = 400 m^3 = 400,000 liter
To = 0 + 273.15K = 273.15K
Tf = 20 + 273.15K = 293.15K
No - Nf =?
2) Formula
pV = NRT => N = pV / (RT)
3) solution
No = pV / (RTo)
Nf = pV / (RTf)
=> No - Nf = [pv / R] [ 1 / To - 1 / Tf ]
=> No - Nf = [1atm*400,000liter / 0.0821 atm*liter/K*mol ] [ 1 / 273.15 - 1 / 293.15]
No - Nf = 1216.9 moles ≈ 1217 moles
Answer: 1217 moles
Is four electrons the answer you’re looking for?
Here is the chemical equation for gun powder, in it’s simple form:
<span>2 KNO3 + S + 3 C → K2S + N2 + 3 CO2.</span>
This is the same simplified formula, only balanced:
<span>10 KNO3 + 3 S + 8 C → 2 K2CO3 + 3 K2SO4 + 6 CO2 + 5 N2.</span>
Answer:
If the volume is doubled and the number of molecules is doubled, pressure is unchanged
Explanation:
Step 1: Data given
Temperature = constant
Volume will be doubled
Number of molecules will be doubles
Step 2:
p*V = n*R*T
⇒ gas constant and temperature are constant
Initial pressure = n*R*T / V
Initial pressure = 2*R*T/2
Initial pressure = RT
Final pressure = 4*RT / 4
Final pressure = R*T
If the volume is doubled and the number of molecules is doubled, pressure is unchanged
Answer:
Below:
Explanation:
To calculate an energy change for a reaction: add together the bond energies for all the bonds in the reactants - this is the 'energy in' add together the bond energies for all the bonds in the products - this is the 'energy out.
Hope it helps....
It's Muska