Ans: As changes in energy levels of electrons increase, the frequencies of atomic line spectra they emit will <u>increase.</u>
The energy (E) is related to the frequency (ν) by the following equation:
E = hν
where h = planck's constant
The change in energy i between levels is:
ΔΕ = h(Δν) -----(1)
Based on the above equation, as the changes in energy levels increase, the frequency of emitted radiation will also increase.
Answer:
Towards this goal, this project aims to develop a statistical measure of the uncertainty of the decisions made on the friction ridge evidence (i.e., evidential value of fingerprint comparison), which ultimately can be referred to as a scientific basis of the identification decisions made in friction ridge analysis.
Explanation:
Answer:
KE = PE at half the table Height:
Explanation
AT ANY POINT IN THE BOOK'S FALL,
TOTAL E = PE +KE
THE TOTAL E IS CONSTANT
Before the book is pushed off, the total energy is potential
TOT E=PE =MGH
BEFORE THE BOOK HITS THE GROUND, THE TOTAL E IS KINETIC
TOT=KE = MVXV/2
WHEN KE = PE
KE+PE =<u> MGH (STARTING ENERGY SINCE E IS CONSERVED)</u>
<u>OR PE+ PE = MGH</u>
<u>OR MGH' + MGH' =MGH</u>
<u>OR 2H' =</u>H
H' (NEW HEIGHT) =H/2
Answer:Calorimetry
Explanation: In this case, an instrument called Calorimeter is used to measure the amount of heat being transferred
Answer : The total change in enthalpy of this reaction is 25 kJ.
Explanation :
Enthalpy of reaction : It is defined as the changes in heat energy takes place when reactants go to products. It is denotes as .
ΔH = Energy of product - Energy of reactant
ΔH is positive when heat is absorbed and the reaction is endothermic.
ΔH is negative when heat is released and the reaction is exothermic.
In the given potential energy diagram, the energy of product at higher level and energy of reactant at lower level. The ΔH for this reaction will be positive.
Given:
Energy of product = 55 kJ
Energy of reactant = 30 kJ
ΔH = Energy of product - Energy of reactant
ΔH = 55 kJ - 30 kJ
ΔH = 25 kJ
Thus, the total change in enthalpy of this reaction is 25 kJ.