Answer:
The molecular formule for this unknow molecule is C2H4O2
Explanation:
The empirical formula is CH2O ( or better said CnH2nOn)
This means there are 3 elements in the formula of this molecule
⇒ Carbon (C) with a Molar mass of 12 g/mole
⇒ Hydrogen (H) with a Molar mass of 1 g/mole
⇒ Oxygen (O) with a Molar mass of 16 g/mole
We can also notice that the amount of hydrogen should 2x the amount of carbon ( also 2x the amount of oxygen).
The mass of the empirical formule = 12g/ mole + 2* 1 g/mole + 16 g/mole = 30 g/mole
To know what number is n in CnH2nOn we should divide the molecular mass by the empirical mass:
60 g/mole / 30g/mole = 2
this means n = 2
and this will give a molecular formule of C2H4O2
We can control this to calculate the molecular mass:
2*12 + 4* 1 + 2*16 = 24 + 4 + 32 = 60 g/mole
The molecular formule for this unknow molecule is C2H4O2
Answer:
- 1 mole of carbon disulfide gas at 273 K and 40 L
- 1 mol of chlorine gas at 273 K and 40 L
- 1 mol of neon gas at 273 K and 40 L
- 1 mol of neon gas at 273 K and 20 L
- 1/2 mol of neon gas at 273 K and 20 L
- 1/2 mol of neon gas at 100 K and 20 L
- 1/2 mol of liquid neon at 100 K
Explanation:
Entropy is the measure of disorder or randomness in a closed system. Its an extensive property of a thermodynamic system
The following points must be considered when ranking the systems according to their entropy:
- The entropy of gases are highest than liquids or solid. And entropy of liquid is higher than solid. That is because gas has more microstate thus have the highest entropy.
- Entropies of large complicated molecules are greater than those of smaller, simpler molecules. Because larger molecules have more disorder because of the greater number of ways they can be move around in three dimensional space.
- highest temperature and highest volume will lead to greatest entropy
- 1 mole of any substance will have greater entropy than 1/2 mole of that same substance
Answer:
The pH of a solution is simply a measure of the concentration of hydrogen ions,
H
+
, which you'll often see referred to as hydronium cations,
H
3
O
+
.
More specifically, the pH of the solution is calculated using the negative log base
10
of the concentration of the hydronium cations.
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
pH
=
−
log
(
[
H
3
O
+
]
)
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Now, we use the negative log base
10
because the concentration of hydronium cations is usually significantly smaller than
1
.
As you know, every increase in the value of a log function corresponds to one order of magnitude.
Explanation:
Answer:
0.4
Explanation:
Given data:
Number of moles of SrCl₂ consumed = ?
Mass of ZnCl₂ produced = 54 g
Solution:
Chemical equation:
ZnSO₄ + SrCl₂ → SrSO₄ + ZnCl₂
Number of moles of ZnCl₂:
Number of moles = mass/ molar mass
Number of moles = 54 g/136.3 g/mol
Number of moles = 0.4 mol
Now we will compare the moles of ZnCl₂ with SrCl₂ from balance chemical equation.
ZnCl₂ : SrCl₂
1 : 1
0.4 : 0.4
Thus when 54 g of ZnCl₂ produced 0.4 moles of SrCl₂ react.
Answer:
- <em>During the polymerization of a 20 monomer-long cellulose molecule,</em> <u>19 molecules of water are released.</u>
<u></u>
Explanation:
In simple terms, <em>cellulose </em>is the biopolymer formed by many glucose units. This is cellulose is the polymer and glucose is the monomer.
To have a <em>20 monomer-long cellulose molecule</em>, 20 monomers have been chemically bonded by reacting 19 times, as it is explained in the next paragrpahs, and so 19 molecules of water have been released.
You can imaging the polymerization process as a step-by-step reaction in which the first step is the condensation reaction of one glucose molelecule to produce a 2 monomer-long chain, with the release of one molecule of water: the second step would be the condensation reaction between the 2 monomer-long chain with another glucose molecule, with the release of an additional molecule of water, and so on, until 19 condensation reactions happen, to obtain the 20 monomer-long cellulose molecule.
Condensation is the loss of water in a chemical reaction.
When two glucose molecules react together, condensation occurs. One OH group from each glucose molecule come together, the OH from one glucose molecule combines with the H part of the OH from the other glucose molecule, to form H₂O (water that is released).
The two glucose molecules (monomers) will form one bigger molecule where the two glucose monomers are bonded through the oxygen atom that did not form part of the water molecule released.
Then, a 20-monomer chain means 19 condenstation reactions, with the release of 19 molecules of water.