I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer: Friction
Explanation: Friction caused m by the ball rubbing against the grass and ground cause it to lose energy in the form of thermal energy and slow down
Answer: It is not likely.
Explanation:
When the bus is moving forward, all the objects inside of it also are moving forward.
Now, as the objects inside the buss are not fixed to the bus, if the bus suddenly stops the objects inside of it will keep moving forward, because of the conservation of the momentum, defined as the quantity of motion (Similar to when you are in a car and it suddenly stops, you can feel the forward impulse).
Then is not likely that, in a case where the bus stops suddenly, an object inside the bus flies backward in opposite direction to the previous movement of the bus.
Answer:The mass of ball B is 10 kg.
Explanation;
Mass of ball A = 
Velocity of the ball A before collision:
Velocity of ball A after collision=
Mass of ball B= 
Velocity of the ball B before collision:
Velocity of ball B after collision=



The mass of ball B is 10 kg.