The new volume will be ≈26mL
rounded to two significant figures.
Explanation:
This question involves the combined gas law. The equation to use is:
When working with gas laws, the temperature is always in Kelvins. To get Kelvins from a Celsius temperature, add 273.15 to the Celsius temperature.
Answer: a) The acceletarion is directed to the center on the turntable. b) 5 cm; ac= 0.59 m/s^2; 10 cm, ac=1.20 m/s^2; 14 cm, ac=1.66 m/s^2
Explanation: In order to explain this problem we have to consider teh expression of the centripetal accelartion for a circular movement, which is given by:
ac=ω^2*r where ω and r are the angular speed and teh radios of the circular movement.
w=2*π*f
We know that the turntable is set to 33 1/3 rev/m so
the frequency 33.33/60=0.55 Hz
then w=2*π*0.55=3.45 rad/s
Finally the centripetal acceleration at differents radii results equal:
r= 0.05 m ac=3.45^2*0.05=0.50 m/s^2
r=0.1 ac=3.45^2*0.1=1.20 m/s^2
r=0.14 ac=3.45^2*0.14=1.66 m/s^2
Answer:
3.43 m/s^2
Explanation:
Force is equal to mass times acceleration. (F=ma). You can use inverse operations to get the formula for acceleration, which is acceleration is equal to force divided by mass. (a=F/m). Since there are two forces here, the force friction (55 N), and the force applied (175 N), we must solve for the net force. To solve for the net force, you take the applied force (175 N) and subtract the frictional force from it (55 N). Thus, the net force is 120 N. With this done, we can now solve for our acceleration.
Using the equation for acceleration, we take the force and divide it by mass.
120/35
Answer: 3.43* m/s^2**
*Note: This is rounded to the nearest hundredth, the full answer is: 3.42857143
**Note: In case you're confused, this is meters per second squared.