1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
15

When and where was the worst hurricane in the united states

Physics
1 answer:
Andre45 [30]3 years ago
8 0
It was in Texas on September 8, 1900.
You might be interested in
Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia o
Harman [31]

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

{\tau _2} = - {T_{\rm{B}}}R  

Similarly, torque due to A is given by  

{\tau _1} = {T_{\rm{A}}}R  

The sum of torque at the pivot is given by  

\tau = {\tau _1} + {\tau _2}  

Replacing {\tau _1} and {\tau _2} by {T_{\rm{A}}}R and - {T_{\rm{B}}}R respectively yields  

\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array}  

Substituting I\alpha for \tau in the equation \tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

The angular acceleration of the wheel is given by \alpha = \frac{a}{R}  

where a is the linear acceleration  

Substituting \frac{a}{R} for \alpha into equation  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right we obtain  

\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

Net force on block A is  

{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}  

Net force on block B is  

{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g  

Where g is acceleration due to gravity  

Substituting {m_{\rm{B}}}a and {m_{\rm{A}}}a for {F_{\rm{B}}} and {F_{\rm{A}}} respectively into equation \frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right and making a the subject we obtain  

\begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}  

Since {m_{\rm{B}}} = 3kg and {m_{\rm{B}}} = 7kg  

g=9.81 and R=0.12m, I=0.22{\rm{ kg}} \cdot {{\rm{m}}^2}  

Substituting these we obtain  

a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}  

\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array}

Therefore, the linear acceleration of block A is 1.55 {\rm{ m/}}{{\rm{s}}^2}

(B)

For block B

{a_{\rm{B}}} = {a_{\rm{A}}}

Therefore, the acceleration of both blocks A and B are same

1.55 {\rm{ m/}}{{\rm{s}}^2}

(C)

The angular acceleration is \alpha = \frac{a}{R}

\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}

(D)

Tension on left side of cord is calculated using

\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}

(E)

Tension on right side of cord is calculated using

\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}

6 0
3 years ago
How do t cells differ from b cells
Natalka [10]
Both cells are formed in bone marrow.....but t cells matures into thymus....and b cells matures into bone marrow ! both helps in defense !

B cells can connect to antigens right on the surface of the invading virus or bacteria. 
T- cells can only connect to virus antigens on the outside of infected cells.

for more info , comment !
5 0
3 years ago
An oil slick on water is 120 nm thick and illuminated by white light incident perpendicular to its surface. What color does the
gregori [183]

Answer:

\lambda = 672 nm

so this is nearly red colour light

Explanation:

As we know that the interference of light from reflected light then the path difference is given as

\Delta x = 2\mu t + \frac{\lambda}{2}

now we know that for constructive interference of light the path difference is given as

\Delta x = n\lambda

so we will have

2\mu t + \frac{\lambda}{2} = N\lambda

so we will have

4\mu t = \lambda

\lambda = 2(1.40)(120nm)

\lambda = 672 nm

so this is nearly red colour light

8 0
3 years ago
A series circuit has a capacitor of 0.25 × 10⁻⁶ F, a resistor of 5 × 10³ Ω, and an inductor of 1H. The initial charge on the cap
viktelen [127]

Answer:

q = (3 + e^{-4000 t} - 4 e^{-1000 t})\times 10^{-6}

at t = 0.001 we have

q = 1.55 \times 10^{-6} C

at t = 0.01

q = 2.99 \times 10^{-6} C

at t = infinity

q = 3 \times 10^{-6} C

Explanation:

As we know that they are in series so the voltage across all three will be sum of all individual voltages

so it is given as

V_r + V_L + V_c = V_{net}

now we will have

iR + L\frac{di}{dt} + \frac{q}{C} = 12 V

now we have

1\frac{d^2q}{dt^2} + (5 \times 10^3) \frac{dq}{dt} + \frac{q}{0.25 \times 10^{-6}} = 12

So we will have

q = 3\times 10^{-6} + c_1 e^{-4000 t} + c_2 e^{-1000 t}

at t = 0 we have

q = 0

0 = 3\times 10^{-6} + c_1  + c_2

also we know that

at t = 0 i = 0

0 = -4000 c_1 - 1000c_2

c_2 = -4c_1

c_1 = 1 \times 10^{-6}

c_2 = -4 \times 10^{-6}

so we have

q = (3 + e^{-4000 t} - 4 e^{-1000 t})\times 10^{-6}

at t = 0.001 we have

q = 1.55 \times 10^{-6} C

at t = 0.01

q = 2.99 \times 10^{-6} C

at t = infinity

q = 3 \times 10^{-6} C

5 0
3 years ago
an object with a mass of 5kg is moving with an initial velocity of 20m/s.the object accelerates at a rate of 15m/s/s for 8s.what
Alinara [238K]

It doesn't matter what the object's initial velocity is, or how long
the acceleration lasts.  All that matters is the object's mass and
acceleration.

Force = (mass) x (acceleration) =

                (5kg) x (15 m/s²) =

                         75 kg-m/s² = <em>75 newtons .</em>


5 0
3 years ago
Other questions:
  • From the top of a cliff, a person tosses a pebble straight downward with an initial velocity of -9.0 meters/second. After 0.50 s
    11·1 answer
  • MRU(movimiento rectilineo uniforme) un movil viaja en linea recta con una velocidad media de 12metros /segundos durante 9segundo
    8·1 answer
  • A woman wears bifocal glasses with the lenses 2.0 cm in front of her eyes. The upper half of each lens has power-0.500 diopter a
    8·1 answer
  • on june 20, 1969, two american astronauts named Buss Aldrin and Neil Armstrong became the first humans to contact the surface of
    14·1 answer
  • Match each fossil fuel with its common use.
    7·1 answer
  • Draw a ray diagram indicating the change in the path of light
    11·1 answer
  • How to tell cold fronts from warm fronts
    8·1 answer
  • Type the correct answer in the box. Spell all words correctly. Complete the sentence using the correct term. A ______enforces fe
    15·1 answer
  • The greatest force in momentum will be produced by
    6·1 answer
  • Which of the following is a form of pollution created when vehicle exhaust interacts with sunlight?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!