Less because the ramp is letting off force but i does depend on the way you are going on the ramp
Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is 
The speed of A is 
The uniform acceleration of B is 
Generally the time taken by go-cart A is mathematically represented as
=> 
=> 
Generally from kinematic equation we can evaluate the time taken by go-cart B as

given that go-cart B starts from rest u = 0 m/s
So

=>
=>
Comparing
we see that
is smaller so go-cart A is faster
Answer to A spring<span> is </span>stretched<span> to a </span>displacement<span> of </span>3.4 m<span> from </span>equilibrium<span>. </span>Then<span> the </span>spring<span> is</span>released<span> and ... </span>Then<span> the </span>spring<span> is </span>released<span> and </span>allowed<span> to </span>recoil<span> to a </span>displacement<span> of </span>1.9 m<span> from</span>equilibrium<span>. The </span>spring constant<span> is </span>11 N/m<span>. What </span>best describes<span> the </span>work involved<span> as the </span>spring recoils<span>? A)87 J of </span>work<span> is performed ...</span>
Answer:
C. 30.6m
Explanation:
To find the height of the tower, we are to use Newtons law of motion to solve this problem. Since the penny is falling from the top of the tower, it is acted by the acceleration due to gravity. The formula to be used is:

Where H is the height of the tower, t is the time taken to hit the ground, u is the initial velocity and g is the acceleration due to gravity.
Given that, t = 2.5 s, g =9.8 m/s², u = 0 m/s (at the top of tower)
