Beginning when the bottom of the object first touches the water,
and as it descends and more and more of it goes under, the
buoyant force on it increases during that time.
As soon as the object is completely underwater, it doesn't matter
how deep under it is, the buoyant force on it remains the same.
Answer:
The correct option is (d).
Explanation:
- The energy a particle has because of its charge and its position relative to another particle is called thermal energy.
- It is the energy that comes from heat. This is generated by the movement of the particles in an object.
- Thermal energy is the energy an object or system has due to the movement of particles within.
Hence, the correct option is (d).
M1*V1 + M2*V2 = M1*V + M2*V.
1400*25 + 1800*20[180+40]=1400*V+1800*V.
Divide both sides by 100:
14*25 + 18*20[220o] = 14V + 18V.
350 + 360[220o] = 32V.
350 - 276-231i = 32V.
74 - 231i = 32V.
242.6[-72.2o] = 32V.
V = 7.6m/s[-72.2o]=7.6m/s[72o] S. of E.
Answer:
D. −F
Explanation:
the rest of the answers are
2/3F
The force is represented as a positive quantity and is repulsive.
Electrostatic force is inversely proportional to the square of the distance.
The direction of the force changes, and the magnitude of the force quadruples.
hope this helps sorry if i was too late! :)
Answer:
1. K.E = 11.2239 kJ ≈ 11.224 kJ
2. 
3. 
Solution:
Now, the kinetic energy of an ideal gas per mole is given by:
K.E = 
where
m = no. of moles = 3
R = Rydberg's constant = 8.314 J/mol.K
Temperature, T = 300 K
Therefore,
K.E = 
K.E = 11223.9 J = 11.2239 kJ ≈ 11.224 kJ
Now,
The heat capacity at constant volume is:


Now,
Required heat transfer to raise the temperature by
is:


