The incorrect answer is C
Answer:
its a pie chart
Explanation:
.........................
Recall the definition of the cross product with respect to the unit vectors:
i × i = j × j = k × k = 0
i × j = k
j × k = i
k × i = j
and that the product is anticommutative, so that for any two vectors u and v, we have u × v = - (v × u). (This essentially takes care of part (b).)
Now, given a = 8i + j - 2k and b = 5i - 3j + k, we have
a × b = (8i + j - 2k) × (5i - 3j + k)
a × b = 40 (i × i) + 5 (j × i) - 10 (k × i)
… … … … - 24 (i × j) - 3 (j × j) + 6 (k × j)
… … … … + 8 (i × k) + (j × k) - 2 (k × k)
a × b = - 5 (i × j) - 10 (k × i) - 24 (i × j) - 6 (j × k) - 8 (k × i) + (j × k)
a × b = - 5k - 10j - 24k - 6i - 8j + i
a × b = -5i - 18j - 29k
No.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a random error has been minimized or even eliminated.
<h3>What is a random error?</h3>
Random error is defined as the deviation of the total error from its mean value due to chance.
Random errors can result from the instrument not being precise or from mistakes by the researcher.
Random errors can be minimized by taking multiple readings and averaging the results.
Since repeated measurements are taken and the average and 95% confidence interval are calculated, the possibility of the lack of agreement being a ransom error has been minimized.
Learn more about random errors at: brainly.com/question/22041172
Answer:
Charge-coupled device (CCD) is a device that receives and transfers an electrical charge to the next region
Explanation:
Charge-coupled device (CCD) is a device that receives and transfers an electrical charge to the next region where it can be modified like changing it to a electronic value.
In astronomy, high-powered telescopes can be used with CCD device image sensor cameras. The imaging system can concentrate for a number of hours on one place in space once the Earth's rotation synchronizes with the telescope.