Answer:
1) Mass that needs to be converted at 100% efficiency is 0.3504 kg
2) Mass that needs to be converted at 30% efficiency is 1.168 kg
Explanation:
By the principle of mass energy equivalence we have

where,
'E' is the energy produced
'm' is the mass consumed
'c' is the velocity of light in free space
Now the energy produced by the reactor in 1 year equals

Thus the mass that is covertred at 100% efficiency is

Part 2)
At 30% efficiency the mass converted equals

Answer:
80,886 cm^3
Explanation:
v= lwh (also known as length × width × height)
v = 122cm × 51cm × 13cm
v = 80,886 cm^3
Passive transport is when molecules travel from HIGHER concentration to LOWER concentration through a concentration gradient.
Active transport is the OPPOSITE. So it travels from LOWER to HIGHER concentration through a concentration gradient.
There are also other differences, but this is the main difference.
Answer: multiply mass and acceleration, unit is N (newtons)
Explanation: law of dynamics: F = ma
Answer:
The correct option is: 4. its ionization energy decreases
Explanation:
Ionization energy refers to the energy required to pull a valence electron completely from the valence shell of a gaseous atom.
Now, in the <u>periodic table of chemical elements</u>, as we down a group, the atomic radius increases, so the effective nuclear charge experienced by the valence electron decreases. Therefore, the <u>ionization energy decreases</u><u>, down the group.</u>
As we across a period, the atomic radius usually decreases, so the effective nuclear charge experienced by the valence electron increases. Therefore, usually the <u>ionization energy increases</u><u>, across the period.</u>
<u>Therefore, as the atomic radius increases, the effective nuclear charge experienced by the valence electron decreases and thus the ionization energy also decreases.</u>