Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
48kg
Explanation:
i could be wrong if i am srry
Answer:
The answer to your question is the letter A) F = 9.23 x 10⁻⁷ N
Explanation:
Data
q₁ = -6.25 x 10⁻⁹ C
q₂ = -6.25 x 10⁻⁹ C
d = 0.617 m
k = 9 x 10⁹ Nm²/C²
F = ?
Formula
F = k q₁q₂ /r²
-Substitution
F = (9 x 10⁹)(-6.25 x 10⁻⁹)(-6.25 x 10⁻⁹) / (0.617)²
-Simplification
F = 3.512 x 10⁻⁷ / 0.381
-Result
F = 9.227 x 10⁻⁷ N ≈ 9.23 x 10⁻⁷ N
Answer:
Explanation:
The Balmer series in a hydrogen atom relates the possible electron transitions down to the n = 2 position to the wavelength of the emission that scientists observe. In quantum physics, when electrons transition between different energy levels around the atom (described by the principal quantum number, n) they either release or absorb a photon. The Balmer series describes the transitions from higher energy levels to the second energy level and the wavelengths of the emitted photons. You can calculate this using the Rydberg formula.
One way of removing nitrogen gas from the atmosphere is by natural nitrogen fixation. This is done by nitrogen-fixing bacteria in the oceans and in the soil. Nitrogen fixation is a process that converts the nitrogen in air to ammonia.