1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mandarinka [93]
3 years ago
12

Question number 11 how did we found the answer ?

Physics
1 answer:
BaLLatris [955]3 years ago
6 0

Answer:

Option A. 57.14 Ω

Explanation:

From the question given above, the following data were obtained:

Resistor 1 (R₁) = 100 Ω

Resistor 2 (R₂) = 400 Ω

Resistor 3 (R₃) = 200 Ω

Equivalent Resistor (Rₚ) =?

The equivalent resistor in the above circuit can be obtained as follow:

1/Rₚ = 1/R₁ + 1/R₂ + 1/R₃

1/Rₚ = 1/100 + 1/400 + 1/200

Find the least common multiple (lcm) of 100, 400 and 200. The result is 400. Divide 400 by 100, 200 and 400 respectively and multiply the result with the numerator as shown

1/Rₚ = (4 + 1 + 2)/400

1/Rₚ = 7/400

Invert

Rₚ = 400/7

Rₚ = 57.14 Ω

You might be interested in
How long does it take an automobile traveling 66.7 km/h to become even with a car that is traveling in another lane at 52.7 km/h
tresset_1 [31]

Answer:

The  time taken is  t =  32.5 \  s

Explanation:

From the question we are told that

   The  speed  of  first car is  v_1  =  66.7 \ km/h  =  18.3 \  m/s

    The  speed  of  second car is v_2  =  52.7 \ km/h  =  14.64 \  m/s

   The  initial distance of separation is  d =  119 \ m

The distance covered by first car is mathematically represented as

     d_t =  d_i  +  d_f

Here  d_i is the initial distance which is  0 m/s

  and  d_f  is the final distance covered which is  evaluated as d_f  =  v_1 * t

So

     d_t =  0 \  m/s  +  (v_1 * t )

     d_t =  0 \  m/s  +  (18.3 * t )

The distance covered by second  car is mathematically represented as

     d_t =  d_i  +  d_f

Here  d_i is the initial distance which is  119 m

  and  d_f  is the final distance covered which is  evaluated as d_f  =  v_2* t

       d_t =  119  + 14.64 *  t

Given that the two car are now in the same position we have that

    119  + 14.64 *  t  =   0   +  (18.3 * t )

   t =  32.5 \  s

6 0
3 years ago
Two blocks joined by a string have masses of 6 and 9 kg. They rest on a frictionless horizontal surface. A 2nd string, attached
Tom [10]

Answer:

12N

Explanation:

Suppose the string mass is negligible, the total mass of the 2 block system is 6 + 9 = 15 kg

So the acceleration of the system when subjected to 30N force is

a = F / M = 30 / 15 = 2 m/s2

So both blocks would have the same acceleration, however, the force acting on the 6kg block would have a magnitude of

f = am = 2 * 6 = 12N

This is the tension in the string between the blocks

5 0
3 years ago
A flat coil of wire consisting of 15 turns, each with an area of 40 cm 2, is positioned perpendicularly to a uniform magnetic fi
zheka24 [161]

Answer:

0.54 A

Explanation:

Parameters given:

Number of turns, N = 15

Area of coil, A = 40 cm² = 0.004 m²

Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T

Time interval, Δt = 2 secs

Resistance of the coil, R = 0.2 ohms

To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:

|V| = |(-N * ΔB * A) /Δt)

|V| = | (-15 * 3.6 * 0.004) / 2 |

|V| = 0.108 V

According to Ohm's law:

|V| = |I| * R

|I| = |V| / R

|I| = 0.108 / 0.2

|I| = 0.54 A

The magnitude of the current in the coil of wire is 0.54 A

6 0
3 years ago
Calculated the measurement uncertainty for Kinetic Energy when :mass = 1.3[kg] +/- 0.4[kg]velocity= 5.2 [m/s] +/- 0.2 [m/s]KE= 1
andriy [413]

Answer:

\rm KE\pm \Delta KE = 17.6\pm 6.8\ J.

Explanation:

<u>Given:</u>

  • Mass, \rm m\pm\Delta m = 1.3\pm 0.4\ kg.
  • Velocity, \rm v\pm \Delta v = 5.2\pm 0.2\ m/s.

where,

\rm \Delta m,\ \Delta v are the uncertainties in mass and velocity respectively.

The kinetic energy is given by

\rm KE = \dfrac 12 mv^2 = \dfrac 12 \times 1.3\times 5.2^2=17.576\approx 17.6\ J.

The uncertainty in kinetic energy is given as:

\rm \dfrac{\Delta KE}{KE}=\dfrac{\Delta m}{m}+\dfrac{2\Delta v}{v}\\\dfrac{\Delta KE}{17.6}=\dfrac{0.4}{1.3}+\dfrac{2\times 0.2}{5.2}\\\dfrac{\Delta KE}{17.6}=0.384\\\Rightarrow \Delta KE = 17.6\times 0.384 = 6.7854\ J\approx6.8\ J\\\\Thus,\\\\KE\pm \Delta KE = 17.6\pm 6.8\ J.

7 0
3 years ago
Explain how its possible for a compound to have both iconic and covalent bonds.<br><br>Thanks!
Evgesh-ka [11]
The atoms which make up the ion are covalently bonded to one another. 19) It is possible for a compound to possess both ionic and covalent bonding. a. If one of the ions is polyatomic then there will be covalent bonding within it.
3 0
3 years ago
Other questions:
  • Explain in detail the birth life and death of a main sequence star give an example
    5·1 answer
  • PLEASE HELP........Compare and contrast microwaves with visible light using wavelength frequency and energy.
    7·2 answers
  • Which statement is true about an airplane wing during flight
    13·1 answer
  • A steady beam of alpha particles (q = + 2e) traveling with constant kinetic energy 14 MeV carries a current of 0.20 µA.
    8·1 answer
  • ______ is the most abundant gas in Earth’s atmosphere.
    14·1 answer
  • Which of the following is always true about the particles that make up matter? A. They can only be found in solid substances. B.
    11·2 answers
  • An opera singer who is a baritone, lowers his pitch and raises his voice for a song. Which best describes how the resulting soun
    14·1 answer
  • THE RIGHT ANSWER WILL RECEIVE A BRAINLESS AND POINTS AND THANKS!!!
    9·1 answer
  • Scientists can work in which of the following. Select all that apply.
    11·1 answer
  • If the velocity of gas molecules is doubled the its kinetic energy will be
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!