Answer:
The time taken is 
Explanation:
From the question we are told that
The speed of first car is 
The speed of second car is 
The initial distance of separation is 
The distance covered by first car is mathematically represented as

Here
is the initial distance which is 0 m/s
and
is the final distance covered which is evaluated as
So


The distance covered by second car is mathematically represented as

Here
is the initial distance which is 119 m
and
is the final distance covered which is evaluated as

Given that the two car are now in the same position we have that


Answer:
12N
Explanation:
Suppose the string mass is negligible, the total mass of the 2 block system is 6 + 9 = 15 kg
So the acceleration of the system when subjected to 30N force is
a = F / M = 30 / 15 = 2 m/s2
So both blocks would have the same acceleration, however, the force acting on the 6kg block would have a magnitude of
f = am = 2 * 6 = 12N
This is the tension in the string between the blocks
Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A
Answer:

Explanation:
<u>Given:</u>
- Mass,
- Velocity,

where,
are the uncertainties in mass and velocity respectively.
The kinetic energy is given by

The uncertainty in kinetic energy is given as:

The atoms which make up the ion are covalently bonded to one another. 19) It is possible for a compound to possess both ionic and covalent bonding. a. If one of the ions is polyatomic then there will be covalent bonding within it.