The fraction of the original amount remaining is closest to 1/128
<h3>Determination of the number of half-lives</h3>
- Half-life (t½) = 4 days
- Time (t) = 4 weeks = 4 × 7 = 28 days
- Number of half-lives (n) =?
n = t / t½
n = 28 / 4
n = 7
<h3>How to determine the amount remaining </h3>
- Original amount (N₀) = 100 g
- Number of half-lives (n) = 7
- Amount remaining (N)=?
N = N₀ / 2ⁿ
N = 100 / 2⁷
N = 0.78125 g
<h3>How to determine the fraction remaining </h3>
- Original amount (N₀) = 100 g
- Amount remaining (N)= 0.78125 g
Fraction remaining = N / N₀
Fraction remaining = 0.78125 / 100
Fraction remaining = 1/128
Learn more about half life:
brainly.com/question/26374513
Answer:
The ball you want to submerge displaces the water occupied in the ball's volume. ... In water the concrete has a buoyancy pressure force equal to the displaced liquid's weight and weighs only 120 pounds until it reaches the surface.
Explanation:
<u>Answer:</u> The change in enthalpy for the given system is -642.8 kJ/mol
<u>Explanation:</u>
To calculate the change in enthalpy for given Gibbs free energy, we use the equation:

where,
= Gibbs free energy = -717.5 kJ/mol = -717500 J/mol (Conversion factor: 1 kJ = 1000 J)
= change in enthalpy = ?
T = temperature = 337 K
= change in entropy = 221.7 J/mol.K
Putting values in above equation, we get:

Hence, the change in enthalpy for the given system is -642.8 kJ/mol