Answer:
The specific heat of zinc is 0.361 J/g°C
Explanation:
<u>Step 1:</u> Data given
44.0 J needed
Mass of solid zinc = 10.6 grams
Initial temperature = 24.9 °C
Final temperature = 36.4 °C
<u>Step 2</u>: Calculate the specific heat of zinc
Q = m*c*ΔT
⇒ with Q = heat (in Joule) = 44.0 J
⇒ with m = the mass of the solid zinc = 10.6 grams
⇒ with c = the specific heat of the zinc = TO BE DETERMINED
⇒ with ΔT = The change in temperature = T2-T1 = 36.4 °C - 24.9 °C = 11.5 °C
44.0 J = 10.6 grams * c * 11.5°C
c = 44.0 J / (10.6g * 11.5 °C)
c = 0.361 J/g°C
The specific heat of zinc is 0.361 J/g°C
<span>The average speed of the gas is related to the kinetic
energy of the gas. The kinetic energy of
the gas is also related to the temperature of the gas. If the average speed of
the gas is closer to zero, it means that it has very low motion or kinetic
energy. This can be inferred that the gas has a very low temperature. At absolute
zero, the motion of all the gas molecules stops. This means that the kinetic
energy of the gas is also zero. Zero kinetic energy means zero average speed.</span>
<span>So, the answer is cylinder B. The average speed of the gas
in cylinder B is closest to zero.</span>
Hello.
The answer is: D it produces hyrogen ions in a solution.
This is correct because when Arrhenius acid it turns into hydrogen ions.substance as an acid if it produces hydrogen ions H(+) or hydronium ions in water. A substance is classified as a base if it produces hydroxide ions OH(-) in water.
have a nice day
To calculate the average mass of the element, we take the summation of the product of the isotope and the percent abundance. In this case, the equation becomes 186.207=187*0.626+185*x where x is the percent abundance of 185. The answer is 0.374 or 37.4%. This can also be obtained by 100%-62.6%= 37.4%.
Answer:
?
Explanation:
What are the statements? You've given the passage but not the statements