Answer: The first electromagnet has a more powerful current than
the second
Explanation:
Since the two electromagnets contain the same types of magnets and wires. If the magnet In the first moves much faster than the second. Therefore:
The first electromagnet has a more powerful current than the second
Because the induced EMF is proportional to the induced current.
Where the induced EMF depends on the speed of the magnet according to the formula below
EMF = BVL
So, increase in speed of the magnet will cause more powerful induced current and emf
Ionic compounds are made up of two charged species, a cation (+) and an anion (–).
The charges must balance out to zero for a stable ionic compound, because ionic bonds are formed between two charged species. They form in ratios according to their charges to balance out.
<h3>
Answer:</h3>
Input work
<h3>
Explanation:</h3>
Concept being tested: Efficiency of machines
Therefore we need to know what is the efficiency of a machine
- Efficiency of a machine is the ratio of work output of machine to the work input expressed as a percentage.
Efficiency = (Work output ÷ Work input) × 100%
- Therefore, if the work input is equal to the work output then the efficiency of the machine will be 100%.
- Most machines are not 100% efficient due to loss of energy in form of heat due to friction of the moving parts of the machine.
The answer is 145 because 100 mph is equal to 25th so 145
The increase in temperature of the metal hammer is 0.028 ⁰C.
The given parameters:
- <em>mass of the metal hammer, m = 1.0 kg</em>
- <em>speed of the hammer, v = 5.0 m/s</em>
- <em>specific heat capacity of iron, 450 J/kg⁰C</em>
The increase in temperature of the metal hammer is calculated as follows;

where;
<em>c is the </em><em>specific heat capacity</em><em> of the metal hammer</em>
<em />
Assuming the metal hammer is iron, c = 450 J/kg⁰C

Thus, the increase in temperature of the metal hammer is 0.028 ⁰C.
Learn more about heat capacity here: brainly.com/question/16559442