Answer:
A volcano fed by highly viscous magma is likely to be a greater threat to life and property than a volcano supplied with very fluid magma because with high viscous magma gas is trapped more in the magma so the gas will build up and then eventually explode, whereas with fluid magma the gas can escape allowing the magma.
HOPE THIS HELPS!!!
Explanation:
An organism that eats another organism.
Predators hunt, and eat their prey.
I think that by "Classical physics" is meant low speed things. By low speed, I think is meant speed far below very roughly half the speed of light, so that Relativistic, special or general, effects can be ignored. Or at least it is hoped that they can be ignored.
Fire extinguishers and rockets get propelled by forcing out large amounts of material (gases under very high pressure) through a nozzle, and the RECOIL from that propels something forward. So, if the action is the ejection of material, the reaction (recoil) is the ejector moving along the same line in the other direction. And that's an example of Newton's third law.
Given a propulsion system, the magnitude of the force recoiling on the ejector will change the momentum of the ejector, often written as the equation F=ma where F is the force, m is the mass being accelerated, and a being the acceleration.
Just as something will stay still until it is moved - inertia - so once set in uniform motion in a straight line, the thing will continue in that motion, theoretically for ever or until something alters its momentum. Newton's first law is to the effect of "every body continues in a state of rest or uniform motion in a straight line unless acted on by a resultant external force". Which, I think, is where the concept of inertia stems from.
I think that the above mostly tcuches on the 3 laws.Any more help needed, please ask.
Explanation:
As the given spheres are connected by a thin wire so, the potential on the spheres are the same.
......... (1)
Hence, total charge will be as follows.
= Q = -95.5 nC .......... (2)
Using the above two equations, the final equation will be as follows.

and, 
Hence, we will calculate the charge on sphere B after the equilibrium is reached as follows.

= 
= 82.714 nC
Thus, we can conclude that the charge on sphere B after equilibrium has been reached is 82.714 nC.