The answer would be c as the cart is not in motion therefor ruling out kinetic and it is completely at rest making all of it energy potential
The molecular weight of K2SO4 is 174.26 g/mole. The mass of K2SO4 required to make this solution is calculated in the following way.
550mL * (0.76mole/1000mL) * (174.26g/mole) = 72.84gram
<span>I hope this helps.</span>
I believe the correct answer would be option 4. The only statement that is true would be that it is difficult to responsibly dispose of nuclear waste products. This is because nuclear waste products are radioactive and are very harmful to the society and to the environment. It could cause serious damage to every being in contact to it.
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated
1/4 mol = 0.25 mol
6 months = 0.5 year
rate = 0,25 mol / 0.5 year = 0.5 mol/year or approx 0.042 mol/month