Answer:
v_{f} = 74 m/s, F = 230 N
Explanation:
We can work on this exercise using the relationship between momentum and moment
I = ∫ F dt = Δp
bold indicates vectors
we can write this equations in its components
X axis
Fₓ t = m ( -v_{xo})
Y axis
t = m (v_{yf} - v_{yo})
in this case with the ball it travels horizontally v_{yo} = 0
Let's use trigonometry to write the final velocities and the force
sin 30 = v_{yf} / vf
cos 30 = v_{xf} / vf
v_{yf} = vf sin 30
v_{xf} = vf cos 30
sin40 = F_{y} / F
F_{y} = F sin 40
cos 40 = Fₓ / F
Fₓ = F cos 40
let's substitute
F cos 40 t = m ( cos 30 - vₓ₀)
F sin 40 t = m (v_{f} sin 30-0)
we have two equations and two unknowns, so the system can be solved
F cos 40 0.1 = 0.4 (v_{f} cos 30 - 20)
F sin 40 0.1 = 0.4 v_{f} sin 30
we clear fen the second equation and subtitles in the first
F = 4 sin30 /sin40 v_{f}
F = 3.111 v_{f}
(3,111 v_{f}) cos 40 = 4 v_{f} cos 30 - 80
v_{f} (3,111 cos 40 -4 cos30) = - 80
v_{f} (- 1.0812) = - 80
v_{f} = 73.99
v_{f} = 74 m/s
now we can calculate the force
F = 3.111 73.99
F = 230 N
Answer:
C. The floor pushing back against the foot
Explanation:
Answer:
β2= β1+10*f
Explanation:
comparing β2 and β1, it is said that β2 is increased by a factor of f.
for each factor of f, there is a 10*f dB increase.
therefore if the β1 is increases by an intensity of factor f
the new intensity would be β1+ 10*f
Explanation:
Below is an attachment containing the solution.
Answer:
44.6 N
Explanation:
Draw a free body diagram of the block. There are four forces on the block:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force F pulling right 30° above horizontal.
Sum of forces in the y direction:
∑F = ma
N + F sin 30° − mg = 0
N = mg − F sin 30°
Sum of forces in the x direction:
∑F = ma
F cos 30° − Nμ = 0
F cos 30° = Nμ
N = F cos 30° / μ
Substitute:
mg − F sin 30° = F cos 30° / μ
mg = F sin 30° + (F cos 30° / μ)
Plug in values:
mg = 20 N sin 30° + (20 N cos 30° / 0.5)
mg = 44.6 N