Answer:
continuous change in position with respect to time
Explanation:
Velocity is defined as the rate of change of the position of an object with respect to its time.
It's the vector quantity of speed as it has both magnitude and direction.
Hope this helps :)
Solution
x(t) = 8 cos t, x(5π/6)= 8 cos(<span>5π/6)
</span>cos(5π/6)=cos(3π/6 + 2π/6 )=cos(π/3 +π/2)= - sin π/3 (cos (x+<span>π/2)= -sinx)
</span>x(t) = -8sin <span>π/3 = - 4 .sqrt3
</span>v(t) = -8sint = -8sin (π/3 +<span>π/2)= -8 cosπ/3 </span>(sin (x+π/2)= cosx)
v(t) =<span> -8 cosπ/3 = -8/2= - 4
</span>a(5π/6) = - 8cost = -(- sin π/3)= 4 .<span>sqrt3
</span>a(5π/6) = 4 .<span>sqrt3</span>
The correct response is D. This is because light is reflected of the building onto the water that is hitting the building.
To solve this problem we apply the thermodynamic equations of linear expansion in bodies.
Mathematically the change in the length of a body is subject to the mathematical expression

Where,
Initial Length
Thermal expansion coefficient
Change in temperature
Since we have values in different units we proceed to transform the temperature to degrees Celsius so


The coefficient of thermal expansion given is

The initial length would be,

Replacing we have to,




This means that the building will be 35.5cm taller