It might be 144.2 m but i’m not for sure:)
Answer:
Δv = 12 m/s, but we are not given the direction, so there are really an infinite number of potential solutions.
Maximum initial speed is 40.6 m/s
Minimum initial speed is 16.6 m/s
Explanation:
Assume this is a NET impulse so we can ignore friction.
An impulse results in a change of momentum
The impulse applied was
p = Ft = 1400(6.0) = 8400 N•s
p = mΔv
Δv = 8400 / 700 = 12 m/s
If the impulse was applied in the direction the car was already moving, the initial velocity was
vi = 28.6 - 12 = 16.6 m/s
if the impulse was applied in the direction opposite of the original velocity, the initial velocity was
vi = 28.6 + 12 = 40.6 m/s
Other angles of Net force would result in various initial velocities.
Grav Force = GMm/r squared. M is earth's mass. m is the probe. r is distance to centre of earth.Given that 600 = GMm/(10,000^2).GMm = 600x(10,000^2) for 10, 000 milesGMm = ? x (20,000^2) for 20, 000 milestherefore600x(10,000^2)=? x (20,000^2)therefore [600x(10,000^2)]/(20,000^2)=? [600x(1x1)]/(2x2)=? [600/4]=? ?=150lb.Same procedure for b and c.Please ask if you want further help.
example "How would i put frost wedging in a sentence?" LOL hope this helped
Answer:
B is the Right answer of this question