The heat (energy) needed to raise the temperature of the water is given by

The wavelength of the radiation of the oven is

, so the energy of a single photon of this radiation is

So, the number of photons required to heat the water is the total energy absorbed by the water divided by the energy of a single photon:

photons
Answer And Explanation:
Primary sources of online data could be blog posts, twitter posts, and vlogs because the person producing forms of work is giving first-person account of his experience.
Secondary sources online data could be articles, news, and documentaries because people have gathered several primary sources to build their case that they are making.
Hope this is clear, and good luck with studies :)
The mechanical energy isn't conserved. Some energy is lost to friction.
Option A.
<h3><u>Explanation:</u></h3>
The mechanical energy is defined as the energy of a body which it achieves by virtue of its position and velocity. The mechanical energy are of two types - potential energy and kinetic energy. The potential energy is the energy of the body which it achieves by means of its relative position and is directly proportional to the height of the body from its relative plane. Whereas the kinetic energy of the body is achieved by virtue of its velocity and is directly proportional to the square of velocity of the body.
As the mountaineer is skiing down the slope of a mountain, the potential energy of the person is gradually changing into his kinetic energy. Had it been in an ideal situation, the potential energy lost would have been just equal to the kinetic energy gained by the person. But there's friction which opposes the speed of the body and reduces the velocity. Thus the kinetic energy will be lost to some extent and the energy won't be conserved.
Answer:
v= s/t
Explanation:
250 km/ h =69.44m/s
S1=2 times 69.44 ≈ 139m
Next 2.5 seconds:
S2 = 100m
Average speed:
v=139m+100m/2s+2.5s = 239/4.5s = 53.2 m/s=192km/h