Answer:
The correct answer is 231 Mpa i.e option a.
Explanation:
using the equation of torsion we Have

where,
= shear stress at a distance 'r' from the center
T = is the applied torque
= polar moment of inertia of the section
r = radial distance from the center
Thus we can see that if a point is located at center i.e r = 0 there will be no shearing stresses at the center due to torque.
We know that in case of a circular section the maximum shearing stresses due to a shear force occurs at the center and equals

Applying values we get

ANSWER:
d. remains a non-zero constant.
STEP-BY-STEP EXPLANATION:
If we consider that there is no air resistance and that the horizontal component would be at x, the velocity remains a non-zero constant
Answer:
In an elastic collision:
- There is no external net force acting. Thus, Momentum before and after collision is equal. Momentum remains conserved.
- Total energy always remains conserved as energy cannot be created nor destroyed. It can change from one form to another.
- There is no lost due to friction in elastic collision. So the kinetic energy is also conserved.
- Velocities may change after collision. If the masses are equal, the velocities interchange.
When one object is stationary:
Final velocity of object 1:
v₁ = (m₁ - m₂)u₁/(m₁ +m₂)
Final velocity of object 2:
v₂ = (2 m₁ u₁)/(m₁+m₂) =
- Objects do not stick together in elastic collision. They stick together in inelastic collision.
- One object may be stationary before the elastic collision.
Thus, conditions for an elastic collision:
- Energy is conserved.
- Velocities may change.
- Momentum is conserved.
- Kinetic energy is conserved.
- One object may be stationary before the elastic collision.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below is the solution:
<span>centripetal accel = 1.5*g
ω²r = 1.5*9.8m/s²
ω² * 8m = 14.7 m/s²
ω = 1.36 rad/s * 1rev/2πrads * 60s/min = 12.9 rpm</span>