Answer:
because air pressure crushes masses and or grams that have a stronger gravitaional
pull
Answer: 596 atm
Explanation:
Given that,
Original pressure of balloon P1 = 3atm
Original temperature of balloon T1 = 298K
New pressure of balloon P2 = 6atm
New temperature of balloon T2 = ?
Since pressure and temperature are given while volume is constant, apply the formula for Pressure law
P1/T1 = P2/T2
3 atm / 298K = 6 atm / T2
To get the value of T2, cross multiply
3 atm x T2 = 6 atm x 298K
3 atmT2 = 1788 atmK
Divide both sides by 3 atm
3 atmT2 / 3 atm = 1788 atmK / 3 atm
T2 = 596 atm
Thus, a temperature of 596 atmospheres is required to increase the pressure to 6 atm.
You already write there it's answer ಠಿ_ಠ
Hope this helps! I found it when I searched your question.
Answer:
See explanation
Explanation:
The structure of ethylene is shown in the image attached. The two carbon atoms have a double covalent bond between them.
The two carbon atoms are sp2 hybridized. The bond between them is a covalent bond, there is one pi bond and one sigma bond between the carbon atoms. Between carbon and hydrogen, there are covalent bonds also. The covalent bonds are sigma bonds.
The pi bonds between carbon atoms is weaker than the sigma bonds between the carbon atoms. This is because, the side-by-side overlap the p orbitals in a pi bond is less effective than the end-to-end overlap of a sigma bond.