Answer:
At the bottom
Explanation:
-Destruction of aquatic flora and fauna
-Economic downturns
-serious health problems
And more!! We need to beware of our actions
Q1)
molarity is defined as the number of moles of solute in 1 L of solution.
the NaCl solution volume is 1.00 L
number of moles NaCl = NaCl mass present / molar mass of NaCl
NaCl moles = 112 g / 58.5 g/mol = 1.91 mol
the number of moles of NaCl in 1.00 L of solution is - 1.91 mol
therefore molarity of NaCl is 1.91 M
Q2)
molality is defined as the number of moles of solute in 1 kg of solvent.
density is mass per volume.
density of the solution is 1.08 g/mL.
therefore mass of the solution is = density x volume
mass = 1.08 g/mL x 1000 mL = 1080 g
since we have to find the moles in 1 kg of solvent
mass of solvent = 1080 g - 112 g = 968 g
number of moles of NaCl in 968 g of solvent - 1.91 mol
therefore number of NaCl moles in 1000 g - (1.91 mol / 968 g) x 1000 g/kg = 1.97 mol/kg
molality of NaCl solution is 1.97 mol/kg
Q3)
mass percentage is the percentage of mass of solute by total mass of the solution
mass percentage of solution = mass of solute / total mass of the solution
mass of solute = 112 g
total mass of solution = 1080 g
mass % of NaCl = 112 g / 1080 g x 100%
therefore mass % of NaCl = 10.4 %
answer is 10.4 %
Explanation:
First, we need to calculate the number of moles of sodium carbonate we have in a 25 g sample. To calculate this, we will
find the molar mass of sodium carbonate (Na2CO3):
⇒ 2 × Molar mass of sodium + Molar mass of carbon + 3×molar mass of oxygen
⇒ 2 × 23 + 12 + 3 × 16
⇒ 46 + 12 + 48
⇒ 106g/mol
Thus, the molar mass of Na2CO3 is 106g/mol.
Therefore, number of moles = 25 ÷ 106
=> 0.2358 mol
Now, we know that every mole of Na2CO3 have 0.2358 moles of Na+ ions. Hence, total moles of Na2CO3 is 0.4716 moles
Number of ions present = 6.022 × 1023 × 0.4716 mol = 2.84 × 1023ions
Answer: I believe the answer is an earthquake.
Explanation: Sorry If I am wrong!
Equilibrium equation is
<span>Ag2CO3(s) <---> 2 Ag+(aq) + CO32-(aq) </span>
<span>From the reaction equation above, the formula for Ksp: </span>
<span>Ksp = [Ag+]^2 [CO32-] = 8.1 x 10^-12 </span>
<span>You know [CO32-], so you can solve for [Ag+] as: </span>
<span>(8.1 x 10^-12) = [Ag+]^2 (0.025) </span>
<span>[Ag+]^2 = 3.24 x 10^-10 </span>
<span>[Ag+] = 1.8 x 10^-5 M </span>