1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
10

Please guys I want your help, there is 20p point

Physics
1 answer:
Stells [14]3 years ago
6 0

Answers:

The acceleration due to gravity on the surface of earth is 9.8 ms^(-2).Time period of a simple pendulum on earth and moon are 3.5 second and 8.4 second respectively. Find the acceleration due to gravity on the moon . <br> Hint : T_(e) = 2pi sqrt((L)/(g_(e))) T_(m)= 2pi sqrt((L)/(g_(m))) <br> (T_(e)^(2))/(T_(m)^(2))= (g_(m))/(g_(e)) <br> g_(m) = (T_(e)^(2))/(T_(m)^(2))g_(e)

You might be interested in
an electric current 0.75 a passes through a circuit that has a resistance of 175. according to ohm's law, what is the voltage of
Aleksandr [31]

Answer:

131.25

Explanation:

i worked it out on a diffrent sheet so its hard to explain

8 0
2 years ago
In an inkjet printer, letters and images are created by squirting drops of ink horizontally at a sheet of paper from a rapidly m
Serga [27]

Answer:

q = 6.48 \times 10^{-14} C

Explanation:

Deflection in the drop is due to electric field force

so we will have

F = qE

acceleration of the drop is given as

a = \frac{qE}{m}

a = \frac{q(7.75 \times 10^4)}{1.00 \times 10^{-11}}

a = 7.75 \times 10^{15} q

now we know that time to cross the plates is given as

t = \frac{D}{v}

t = \frac{0.02}{18}

t = 1.11 \times 10^{-3} s

now the deflection is given as

d = \frac{1}{2}at^2

0.310 \times 10^{-3} = \frac{1}{2}(7.75 \times 10^{15} q)(1.11 \times 10^{-3})^2

0.310 \times 10^{-3} = 4.78 \times 10^9 q

q = 6.48 \times 10^{-14} C

5 0
2 years ago
What is buoyant force on the ball? Question 9 on student exploration: Archimedes Princable
mariarad [96]
Mass of the displaced material. In water it would be the mass of the water that the volume of the ball displaces.
3 0
3 years ago
A photovoltaic panel of dimension 2 m × 4 m is installed on the roof of a home. The panel is irradiated with a solar flux of GS
Flura [38]

Answer:

(a) the electrical power generated for still summer day is 1013.032 W

(b)the electrical power generated for a breezy winter day is 1270.763 W

Explanation:

Given;

Area of panel = 2 m × 4 m, = 8m²

solar flux  GS = 700 W/m²

absorptivity of the panel, αS = 0.83

efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp

panel emissivity , ε = 0.90

Apply energy balance equation to determine he electrical power generated;  

transferred energy + generated energy = 0

(radiation + convection) +  generated energy = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s

(a) the electrical power generated for still summer day

T_s = T_{\infty} = 35 ^oC = 308 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_1)\alpha_s G_s A \\\\P = (0.553-0.001 *335.05)0.83*700*8 \\\\P = 1013.032 \ W

(b)the electrical power generated for a breezy winter day

T_s = T_{\infty} = -15 ^oC = 258 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_2)\alpha_s G_s A \\\\P = (0.553-0.001 *279.6)0.83*700*8 \\\\P = 1270.763 \ W

3 0
2 years ago
If a 0.08 kg cell phone falls off a table at 15 m/s, then what is its kinetic energy right before it hits the ground?
Mariana [72]

The kinetic energy of the phone right before it hits the ground is 9J.

<h3>Kinetic energy of the phone</h3>

The kinetic energy of the phone right before it hits the ground is calculated as follows;

K.E = ¹/₂mv²

where;

  • m is mass of the phone
  • v is velocity of the phone

K.E = ¹/₂(0.08)(15)²

K.E = 9 J

Thus, the kinetic energy of the phone right before it hits the ground is 9J.

Learn more about kinetic energy here: brainly.com/question/25959744

#SPJ1

7 0
1 year ago
Other questions:
  • Some kids are playing dodgeball, in which they throw squishy balls at each other while trying to avoid being hit themselves. Ass
    8·1 answer
  • Suppose a conducting rod is 52 cm long and slides on a pair of rails at 2.75 m/s. What is the strength of the magnetic field in
    8·1 answer
  • A student decides they need a cup of coffee. The energy lost as the coffee cools down is _____ the energy gained by the surround
    5·2 answers
  • A light-year is the distance that light travels in one year. The speed of light is 3.00 × 108 m/s. How many miles are there in o
    12·1 answer
  • What do significant figures in a measurement include___________________________________.
    7·1 answer
  • An element's atomic number is the​
    6·1 answer
  • Two spectators at a soccer game in Montjuic Stadium see, and a moment later hear, the ball being kicked on the playing field. Th
    11·1 answer
  • Oque e um projeto de vida​
    5·1 answer
  • A 4.0 kg mass has a velocity of 10 m/s to the EAST. The 4.0 kg mass is subjected to a constant net force of 16 N to the WEST for
    6·1 answer
  • The international space station travels at a distance of about 250 miles above Earth’s surface and at a speed of 17,500 miles pe
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!