Answer:
by answering your question
Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
v^2 = v0^2 +2ad
v^2 = 22^2 + 2*3.78*45 = 824.2
v= √824.2 = 28.7 m/s
Answer:
d)21.5 moles
Explanation:
Given that
L = 24 L
T = 27 °C = 300 K
P = 22 atm
We know that ideal gas equation
P V = n R T
P=Pressure ,V= Volume ,n=Moles ,R=Universal gas constant ,T=Temperature
Now by putting the values
22 x 24 = n x 0.08206 x 300
n= 21.447 moles
n= 21.5 moles
Therefore the number of moles will be 21.5 moles.
The answer is "d".