Displacement = (straight-line distance between the start point and end point) .
Since the road east is perpendicular to the road north,
the car drove two legs of a right triangle, and the magnitude
of its final displacement is the hypotenuse of the triangle.
Length of the hypotenuse = √ (215² + 45²)
= √ (46,225 + 2,025)
= √ 48,250
= 219.7 miles .
Answer:
1. at least two charged interacting parts
2. from the electric fields of charged subatomic particles
3 an arrow released from the bow
4Electrical fields of charged particles interact, bonding those with opposite charges.
5 the interaction of the electric fields of protons and electrons
6 The energy stored in the system increases.
7 Kinetic energy increases because the magnets move in the direction of the field.
8 Iron pieces accelerate toward the magnet, and the energy stored in the system decreases.
9
The energy stored in the field decreases because the magnet moves in the direction of the field.
10 The energy stored increases and then decreases.
11 The wire was not connected to the source.
12 The electromagnet will become more powerful.
the rest are written, hope this helps (:
That's one of the three changes that are called "acceleration".
The other two are:
-- increase in the magnitude
-- change in direction.
Some might call a decrease in the magnitude "deceleration".
Back emf is 85.9 V.
<u>Explanation:</u>
Given-
Resistance, R = 3.75Ω
Current, I = 9.1 A
Supply Voltage, V = 120 V
Back emf = ?
Assumption - There is no effects of inductance.
A motor will have a back emf that opposes the supply voltage, as the motor speeds up the back emf increases and has the effect that the difference between the supply voltage and the back emf is what causes the current to flow through the armature resistance.
So if 9.1 A flows through the resistance of 3.75Ω then by Ohms law,
The voltage across the resistance would be
v = I x R
= 9.1 x 3.75
= 34.125 volts
We know,
supply voltage = back emf + voltage across the resistance
By plugging in the values,
120 V = back emf + 34.125 V
Back emf = 120 - 34.125
= 85.9 Volts
Therefore, back emf is 85.9 V.