Answer:
O is truse is the best answer hhahahha
Explanation:
Answer:
If the turbulent velocity profile in a pipe of diameter 0.6 m may be approximated by u/U=(y/R)^(1/7), where u is in m/s and y is in m and 0.15 m from the pipe.
Explanation:
hope it helps
Answer:
e= 50 J/kg
Explanation:
Given that
Speed ,v= 10 m/s
Diameter of the turbine = 90 m
Density of the air ,ρ = 1.25 kg/m³
We know that mechanical energy given as

That is why mechanical energy per unit mass will be

Now by putting the values in the above equation we get

e= 50 J/kg
That why the mechanical energy unit mass will be 50 J/kg.
Answer:
See explaination and attachment.
Explanation:
Navier-Stokes equation is to momentum what the continuity equation is to conservation of mass. It simply enforces F=ma in an Eulerian frame.
The starting point of the Navier-Stokes equations is the equilibrium equation.
The first key step is to partition the stress in the equations into hydrostatic (pressure) and deviatoric constituents.
The second step is to relate the deviatoric stress to viscosity in the fluid.
The final step is to impose any special cases of interest, usually incompressibility.
Please kindly check attachment for step by step solution.
Answer:
I believe this is your question.
See the hand worked solution attached.