Let events
A=Nathan has allergy
~A=Nathan does not have allergy
T=Nathan tests positive
~T=Nathan does not test positive
We are given
P(A)=0.75 [ probability that Nathan is allergic ]
P(T|A)=0.98 [probability of testing positive given Nathan is allergic to Penicillin]
We want to calculate probability that Nathan is allergic AND tests positive
P(T n A)
From definition of conditional probability,
P(T|A)=P(T n A)/P(A)
substitute known values,
0.98 = P(T n A) / 0.75
solving for P(T n A)
P(T n A) = 0.75*0.98 = 0.735
Hope this helps!!
Answer:
20
Steps-by-step explanation:
sorry mistake
Answer:
A) 96 cm
Step-by-step explanation:
Split into three parallelograms
Shape 1: 6 by 7 6×7=42
Shape 2: 3 by 4 3×4=12
Shape 3: 6 by 7 6×7=42
42+12+42=96
Hi! Your answer is q = -9
Please see an explanation for a better and clear understanding to your problem.
Any questions about my answer and explanation can be asked through comments! :)
Step-by-step explanation:
Since we want to solve for q-term. That means we are going to isolate q-term.

We can add 4 and 9 together.

Because we want to know the value of q. That means we have to isolate q-term by subtracting both sides by 13.

We are reaching to the final step where we divide the whole equation by 3.

Finally, the solution for this equation is q = -9. But what if you are not certain or sure about the answer? Let's check it out!
To check the answer, simply substitute q = -9 in the equation.

Notice that the equation is true for q = -9. Hence, we can conclude that the solution for this equation is q = -9.
Hope this helps!