Answer:
11.78meters
Explanation:
Given data
Mass m = 100kg
Length of cord= 10m
Spring constant k= 35N/m
At the greatest vertical distance, the spring potential energy is equal to the gravitational potential energy
That is
Us=Ug
Us= 1/2kx^2
Ug= mgh
1/2kx^2= mgh
0.5*35*10^2= 100*9.81*h
0.5*35*100=981h
1750=981h
h= 1750/981
h= 1.78
Hence the bungee jumper will reach 1.78+10= 11.78meters below the surface of the bridge
Answer:
C 0.85 j/g*k
Explanation:
The specific heat capacity of a material is given by:

where
Q is the amount of heat supplied to the object
m is the mass of the object
is the increase in temperature of the object
For the object in this problem, we have
m = 117 g is the mass
Q = 1200 J is the heat supplied
is the increase in temperature
Substituting into the formula, we find the specific heat:

Answer:
Just as the angles of the sun, moon and Earth affect tidal heights over the course of a lunar month, so do their distances to one another. Because the moon follows an elliptical path around the Earth, the distance between them varies by about 31,000 miles over the course of a month.
Hope this helped, have a nice rest of your day!
Elastic Potential Energy because the elasticity in the string stores up the energy.