Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.
Answer:
3 seconds
Explanation:
Applying,
Applying,
v = u±gt................ Equation 1
Where v = final velocity, u = initial velocity, t = time, g = acceleration due to gravity.
From the question,
Given: v = 0 m/s ( at the maximum height), u = 30 m/s
Constant: g = -10 m/s
Substitute these values into equation 1
0 = 30-10t
10t = 30
t = 30/10
t = 3 seconds
Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
Answer:
0.5 m/s north
Explanation:
Take east to be +x, west to be -x, north to be +y, and south to be -y.
His displacement in the x direction is:
x = 20 m − 20 m = 0 m
His displacement in the y direction is:
y = 10 m
His total displacement is therefore 10 m north.
His velocity is equal to displacement divided by time.
v = 10 m north / 20 s
v = 0.5 m/s north