Answer:
a) 
b) 
Explanation:
Given:
height of water in one arm of the u-tube, 
a)
Gauge pressure at the water-mercury interface,:

we've the density of the water 


b)
Now the same pressure is balanced by the mercury column in the other arm of the tube:



<u>Now the difference in the column is :</u>



Answer
4.8 N
If the box is moving with a constant velocity, then we can say that the system is in equilibrium. This is because if the external force (F->) was greater than other forces the box would be accelerating. This tells us that this force (F->) is just enough to overcome friction and so it must be equal to 4.8 N.
The normal force has no effect to the horizontal velocities or forces. It is equal to -Weight. That is -74 N. The negative sign shows that the force is in opposite direction.
Answer: The spring constant is K=392.4N/m
Explanation:
According to hook's law the applied force F will be directly proportional to the extension e produced provided the spring is not distorted
The force F=ke
Where k=spring constant
e= Extention produced
h=2m
Given that
e=20cm to meter 20/100= 0.2m
m=100g to kg m=100/1000= 0.1kg
But F=mg
Ignoring air resistance
assuming g=9.81m/s²
Since the compression causes the plastic ball to poses potential energy hence energy stored in the spring
E=1/2ke²=mgh
Substituting our values to find k
First we make k subject of formula
k=2mgh/e²
k=2*0.1*9.81*2/0.1²
K=3.921/0.01
K=392.4N/m