Answer:
The required angular speed the neutron star is 10992.32 rad/s
Explanation:
Given the data in the question;
mass of the sun M
= 1.99 × 10³⁰ kg
Mass of the neutron star
M
= 2( M
)
M
= 2( 1.99 × 10³⁰ kg )
M
= ( 3.98 × 10³⁰ kg )
Radius of neutron star R
= 13.0 km = 13 × 10³ m
Now, let mass of a small object on the neutron star be m
angular speed be ω
.
During rotational motion, the gravitational force on the object supplies the necessary centripetal force.
GmM
= / R
² = mR
ω
²
ω
² = GM
= / R
³
ω
= √(GM
= / R
³)
we know that gravitational G = 6.67 × 10⁻¹¹ Nm²/kg²
we substitute
ω
= √( ( 6.67 × 10⁻¹¹ )( 3.98 × 10³⁰ ) ) / (13 × 10³ )³)
ω
= √( 2.65466 × 10²⁰ / 2.197 × 10¹²
ω
= √ 120831133.3636777
ω
= 10992.32 rad/s
Therefore, The required angular speed the neutron star is 10992.32 rad/s
<span>A body has translatory motion if it moves along a: mcqs </span>
Answer:
The width of the central bright fringe on the screen is observed to be unchanged is 
Explanation:
To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes. Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

Where,
w = width
wavelength
m is an integer, m = 1, 2, 3...
We here know that as
as w are constant, then

We need to find
, then

Replacing with our values:


Therefore the width of the central bright fringe on the screen is observed to be unchanged is 