1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
3 years ago
8

A slinky forms it’s third harmonic standing wave when the input frequency is 24 Hz. What is the fundamental frequency of the sli

nky? Will an input frequency of 28 Hz create a standing wave? Explain your answer.
Physics
1 answer:
jarptica [38.1K]3 years ago
6 0

Answer: The fundamental frequency of the slinky = 8Hz

An input frequency of 28 Hz will not create a standing wave

Explanation:

Let Fo = fundamental frequency

At third harmonic,

F = 3Fo

If F = 24Hz

24 = 3Fo

Fo = 24/3 = 8Hz

If an input frequency = 28 Hz at 3rd harmonic

Let find the fundamental frequency

28 = 3Fo

Fo = 28/3

Fo = 9.33333Hz

Since Fo isn't a whole number, it can't create a standing wave

You might be interested in
Waves that move the particles of the medium parallel to the direction in which the waves are traveling are called
Nikolay [14]

1. a. longitudinal waves.

There are two types of waves:

- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave

- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.

So, these types of waves are called longitudinal waves.


2. d. a medium

There are two types of waves:

- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)

- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium


3. a. AM/FM radio

Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.

5 0
3 years ago
How much work would it take to push two protons very slowly from a separation of 2.00×10−10m (a typical atomic distance) to 3.00
laiz [17]

Answer:

Work= -7.68×10⁻¹⁴J

Explanation:

Given data

q₁=q₂=1.6×10⁻¹⁹C

r₁=2.00×10⁻¹⁰m

r₂=3.00×10⁻¹⁵m

To find

Work

Solution

The work done on the charge is equal to difference in potential energy

W=ΔU

Work=U_{1}-U_{2}\\ Work=-kq_{1}q_{2}[\frac{1}{r_{2}}-\frac{1}{r_{1}} ]\\Work=(-9*10^{9})*(1.6*10^{-19} )^{2}[\frac{1}{3.0*10^{-15} }-\frac{1}{2*10^{-10} } ]\\  Work=-7.68*10^{-14}J

4 0
3 years ago
A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex
irina1246 [14]

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

3 0
3 years ago
A positive or negative outcome of a decision or action can be called a
Mandarinka [93]
The answer to this would be :
<span>consequence
</span>hope that this helps you! 
Source: I had done a research about this. =)
7 0
3 years ago
10. If one body is positively charged and another body is negatively charged, free electrons tend to
marta [7]

Answer: B.move from the negatively charged body to the positively charged body.

Explanation: If one body is positively charged and another body is negatively charged, free electrons tend to move from the negatively charged body to the positively charged body. This happens because they have different charges and therefore electrons are more attracted to the positive or its opposite charge.

7 0
2 years ago
Other questions:
  • oe finds that the temperature of a substance is 12 degrees Celsius. What does this tell Zoe about the substance? Its internal en
    11·2 answers
  • What in the world is infrared radiation
    14·1 answer
  • According to thomas gage's spies, in which town had the minutemen been collecting a large amount of arms?
    15·2 answers
  • Which statement best describes the superposition principle?
    9·1 answer
  • If there are 50 people per square kilometer in a city, and the area of the city is 1.5 × 10 square kilometers. What is the total
    8·1 answer
  • 1. What is the new kinetic energy of the 1900kg ship on the right moving at 4 m/s?
    8·1 answer
  • The volume of a cube is 512 cm3. What would change if the volume of the cube were measured in cubic meters?. . A.. The volume of
    13·2 answers
  • Current that moves in one direction from negative to positive. May be created by a battery. Is generally NOT found in U.S. Elect
    12·2 answers
  • 4.
    13·1 answer
  • The power in an electrical circuit is given by the equation P= RR, where /is
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!