Momentum = mass x velocity
12 = 4 x v | ÷ both sides by 4
12 ÷ 4 =v
v= 3 m/s
Answer:
The normal line divides the angle between the incident ray and the reflected ray into two equal angles. The angle between the incident ray and the normal is known as the angle of incidence. The angle between the reflected ray and the normal is known as the angle of reflection.
Answer:
the source of sound moves towards an observe
Explanation:
The Doppler effect is related to waves such as sound or light. the effect causes an increase or decrease in the frequency of sound light or other waves when the souces either move towards or away from the observer. For example the siren of the train to a person on the platform, the redshift seen by astronomers.
Therefore, The Doppler shift can be observed when the source of sound moves towards an observer From a place closer to the observer than the last wave's crest, each consecutive wave crest is sent. Each wave therefore, takes a little less time than the preceding wave to reach the observer.
Answer:
(a)
M = 1.898 x 10^27 kg
(b)
v = 13.74 km/s
(c) E = 0.28 N/kg
Explanation:
Time period, T = 3.55 days = 3.55 x 24 x 3600 second = 306720 s
Radius, r = 6.71 x 10^8 m
G = 6.67 x 10^-11 Nm^2/kg^2
(a) 


M = 1.898 x 10^27 kg
(b) Let v be the orbital velocity


v = 13739.5 m/s
v = 13.74 km/s
(b) The gravitational field E is given by


E = 0.28 N/kg
Answer:
78.4 m
Explanation:
To obtain the height of the cliff;
We can use the Relation to obtain the final velocity, v
v = u + at
a = acceleration due to gravity = 9.8m/s²
v = 0 + (9.8*4)
v = 0 + 39.2
v = 39.2 m/s
To obtain the Height, S
v² = u² + 2aS
39.2^2 = 0 + 2(9.8)S
39.2^2 = 0 + 19.6S
1536.64 = 19.6S
S = 1536.64 / 19.6
S = 78.4 m