1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
8

Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar

e cooled. Determine the heat transfer, in kJ
Physics
1 answer:
brilliants [131]3 years ago
6 0

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

You might be interested in
Which of the following are examples of natural forces? A. optical B. phase C. gravity D. nuclear
denpristay [2]
<span>The forces of nature are phase forces.</span>
6 0
3 years ago
A 10 Kg dog is running with a speed of 5.0 m/s what is the minimum work required to stop the dog
ra1l [238]

Answer:

25J

Explanation:

Given parameters:

Mass of the dog  = 10kg

Speed of the dog  = 5m/s

Unknown:

The minimum energy required to stop the dog  = ?

Solution:

The dog is moving with a kinetic energy and to stop the dog, an equal amount of kinetic energy generated must be applied to the dog.

 To find the kinetic energy;

        K.E  = \frac{1}{2} m v²

m is the mass

v is the velocity

Now insert the parameters and solve;

      K.E  =  \frac{1}{2}  x 10 x 5  = 25J

8 0
3 years ago
HELPP !! pleaseeeeeeeee!!!!!!!!
sertanlavr [38]

Answer:

Atomic name is your answer.

5 0
3 years ago
Read 2 more answers
A student wearing a frictionless roller skates on a horizontal is pushed by a friend with a constant force of 55N. How far must
umka21 [38]

Answer:

6.58m

Explanation:

The kinetic energy = Workdone on the roller

Workdone = Force * distance

Given

KE = Workdone = 362J

Force = 55N

Required

Distance

Substitute into the formula;

Workdone = Force * distance

362 = 55d

d = 362/55

d = 6.58m

Hence the student must push at a distance of 6.58m

3 0
3 years ago
Step 2: Apply NEwton's second law Apply ∑Fy = may , what should ay be equal to, since the block doesn't move in the y direction
andrey2020 [161]

Answer:

∑Fy = 0, because there is no movement, N = m*g*cos (omega)

Explanation:

We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.

If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.

3 0
3 years ago
Other questions:
  • A vertical spring stretches 4.4 cm when a 16-g object is hung from it. the object is replaced with a block of mass 22 g that osc
    8·1 answer
  • What is the most common gas in the atmosphere
    13·2 answers
  • Consider a grill with the lid closed to be a closed system. The propane provides chemical energy. The propane is ignited to prod
    13·1 answer
  • Marcus is on a train that travels 20 and takes 5 seconds to slow to 10 .
    13·1 answer
  • Which of the following is the most important skill for a human resource
    5·1 answer
  • Which of the following statements is NOT true?
    13·1 answer
  • Which exercise program is least effective for developing cardiovascular fitness?
    8·2 answers
  • An 6 kg object accelerating from 17 m/s to 10 m/s. What is the change in momentum of the object?
    13·1 answer
  • In the diagram below, a 10-kilogram ball is fired with a
    11·1 answer
  • Fffffrrrrreeeeee points you can have them!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!